ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямая пересекает отрезок $AB$ в точке $C$. Какое максимальное число точек $X$ может найтись на этой прямой так, чтобы один из углов $AXC$ и $BXC$ был в два раза больше другого? Вася и Петя играют в следующую игру. На доске написаны два числа: 1/2009 и 1/2008. На каждом ходу Вася называет любое число x, а Петя увеличивает одно из чисел на доске (какое захочет) на x. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя? На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20. Две окружности пересекаются в точках A и B. Их общая касательная (та, которая ближе к точке B) касается окружностей в точках E и F. Прямая AB пересекает прямую EF в точке M. На продолжении AM за точку M выбрана точка K так, что KM = MA. Прямая KE вторично пересекает окружность, содержащую точку E, в точке C. Прямая KF вторично пересекает окружность, содержащую точку F, в точке D. Докажите, что точки C, D и A лежат на одной прямой.
Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.
На доске написано выражение
В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.
Сфера ω проходит через вершину S пирамиды SABC и пересекает рёбра SA, SB и SC вторично в точках A1, B1 и C1 соответственно. Сфера Ω, описанная около пирамиды SABC, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (ABC). Точки A2, B2 и C2 симметричны точкам A1, B1 и C1 относительно середин рёбер SA, SB и SC соответственно. Докажите, что точки A, B, C, A2, B2 и C2 лежат на одной сфере. По круговой дорожке стадиона длиной 400 метров из одной точки в одном направлении выбегают три спортсмена с постоянными скоростями 12 км/ч,
Окружность касается стороны BC треугольника ABC в точке M, а продолжений сторон AB и AC — в точках P и Q соответственно. Вписанная окружность треугольника ABC касается стороны BC в точке K, а стороны AB — в точке L. Докажите, что: а) отрезок AP равен полупериметру p треугольника ABC; б) BM = CK; в) BC = PL.
Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты? Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству ab + cd = ac – 10bd. Середины диагоналей
AC, BD, CE,... выпуклого
шестиугольника ABCDEF образуют выпуклый шестиугольник.
Докажите, что его площадь в четыре раза меньше площади
исходного шестиугольника.
Трое рабочих копают яму. Они работают по очереди, причём каждый из них работает столько времени, сколько нужно двум другим, чтобы вырыть половину ямы. Работая таким образом, они выкопали яму. Во сколько раз быстрее трое рабочих выкопают такую же яму, если будут работать одновременно? Дано отображение прямой a на прямую b, сохраняющее двойное отношение
любой четверки точек. Докажите, что это отображение проективно.
Две коники имеют 4 общих точки. Докажите, что эти
точки лежат на одной окружности тогда и только тогда, когда оси
коник перпендикулярны.
С помощью одного циркуля постройте окружность, проходящую через три данные точки.
Докажите, что любая гипербола, проходящая через вершины треугольника ABC
и точку пересечения его высот, является гиперболой
с перпендикулярными асимптотами.
На витрине ювелирного магазина лежат 15 бриллиантов. Рядом с ними стоят таблички с указанием масс, на которых написано 1, 2, ..., 15 карат. У продавца есть чашечные весы и четыре гирьки массами 1, 2, 4 и 8 карат. Покупателю разрешается только один тип взвешиваний: положить один из бриллиантов на одну чашу весов, а гирьки — на другую и убедиться, что масса на соответствующей табличке указана верно. Однако за каждую взятую гирьку нужно заплатить продавцу 100 монет. Если гирька снимается с весов и в следующем взвешивании не участвует, продавец забирает её. Какую наименьшую сумму придётся заплатить, чтобы проверить массы всех бриллиантов? Кривая |
Страница: << 1 2 [Всего задач: 7]
Точки A и B окружности S1 соединены дугой
окружности S2, делящей площадь круга, ограниченного S1,
на равные части. Докажите, что дуга S2, соединяющая A и B, по
длине больше диаметра S1.
Кривая
Страница: << 1 2 [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке