ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи При каких a многочлен P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)x – a³ делится на x – 1? Докажите, что ни при каком натуральном m число 1998m – 1 не делится на 1000m – 1. Докажите, что пучок лучей света, параллельных оси параболы, после отражения
от параболы сходится в ее фокусе.
Сколько цифр имеет число 2100? Постройте треугольник по двум углам A, B и
периметру P.
Диагонали четырехугольника ABCD пересекаются
в точке O. Докажите, что
SAOB = SCOD тогда и только тогда,
когда
BC || AD.
В четырёхугольник ABCD вписан эллипс с фокусом F. Докажите, что
Потроить треугольник по высоте к стороне а ha, медиане к стороне a ma и Длины сторон параллелограмма равны a и b, длины
диагоналей — m и n. Докажите, что
a4 + b4 = m2n2 тогда и
только тогда, когда острый угол параллелограмма равен
45o.
Пусть AA' и BB' — сопряженные диаметры эллипса с центром O.
Докажите, что:
На окружности отмечено десять точек. Сколько существует незамкнутых несамопересекающихся девятизвенных ломаных с вершинами в этих точках? Двойным отношением четырёх комплесных чисел называется число На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников? Треугольник ABC вписан в окружность радиуса R
с центром O. Докажите, что площадь подерного треугольника
точки P относительно треугольника ABC (см. задачу 5.99)
равна
|
Страница: 1 2 >> [Всего задач: 8]
Пусть A1, B1 и C1 - основания перпендикуляров, опущенных из точки P на прямые BC, CA и AB. Треугольник A1B1C1 называют подерным (или педальным) треугольником точки P относительно треугольника ABC.
Прямые AP, BP и CP пересекают описанную
окружность треугольника ABC в точках A2, B2 и C2; A1B1C1 — подерный треугольник точки P относительно
треугольника ABC (см. задачу 5.99). Докажите, что
Внутри остроугольного треугольника ABC дана
точка P. Опустив из нее перпендикуляры PA1, PB1 и PC1
на стороны, получим
Треугольник ABC вписан в окружность радиуса R
с центром O. Докажите, что площадь подерного треугольника
точки P относительно треугольника ABC (см. задачу 5.99)
равна
Из точки P опущены перпендикуляры PA1, PB1
и PC1 на стороны треугольника ABC. Прямая la соединяет
середины отрезков PA и B1C1. Аналогично определяются
прямые lb и lc. Докажите, что эти прямые пересекаются в одной
точке.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке