ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Отрезок постоянной длины движется по плоскости
так, что его концы скользят по сторонам прямого угла ABC. По какой
траектории движется середина этого отрезка?
Прямоугольник разбили двумя прямыми, параллельными его сторонам, на четыре прямоугольника. Один из них оказался квадратом, а периметры прямоугольников, соседних с ним, равны 20 см и 16 см. Найдите площадь исходного прямоугольника. Найдите m и n зная, что Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное. Найдите наименьшее значение выражения а4 – а2 – 2а. Четырехугольник ABCD выпуклый; точки
A1, B1, C1
и D1 таковы, что
AB||C1D1, AC||B1D1 и т. д. для всех
пар вершин. Докажите, что четырехугольник
A1B1C1D1 тоже
выпуклый, причем
Внутри треугольника ABC взята точка X. Прямая AX
пересекает описанную окружность в точке A1. В сегмент,
отсекаемый стороной BC, вписана окружность, касающаяся дуги
BC в точке A1, а стороны BC — в точке A2. Точки
B2 и C2 определяются аналогично. Докажите, что прямые
AA2, BB2 и CC2 пересекаются в одной точке.
Для всех действительных x и y выполняется равенство f(x² + y) = f(x) + f(y²). Найдите f(–1). a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0. Выпуклый четырехугольник разделен диагоналями
на четыре треугольника. Докажите, что прямая, соединяющая
точки пересечения медиан двух противоположных треугольников,
перпендикулярна прямой, соединяющей точки пересечения высот двух других
треугольников.
Постройте треугольник по сторонам a и b, если
известно, что угол против одной из них в три раза больше
угла против другой.
В четырехугольнике ABCD стороны AB и CD равны,
причем лучи AB и DC пересекаются в точке O. Докажите, что прямая,
соединяющая середины диагоналей, перпендикулярна биссектрисе угла AOD.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 110]
В четырехугольнике ABCD стороны AB и CD равны,
причем лучи AB и DC пересекаются в точке O. Докажите, что прямая,
соединяющая середины диагоналей, перпендикулярна биссектрисе угла AOD.
На сторонах BC и AD четырехугольника ABCD взяты
точки M и N так, что
BM : MC = AN : ND = AB : CD.
Лучи AB и DC пересекаются в точке O. Докажите, что прямая MN
параллельна биссектрисе угла AOD.
Докажите, что биссектрисы углов выпуклого
четырехугольника образуют вписанный четырехугольник.
Два различных параллелограмма ABCD и
A1B1C1D1
с соответственно параллельными сторонами вписаны в
четырехугольник PQRS (точки A и A1 лежат на стороне PQ, B
и B1 — на QR и т. д.). Докажите, что диагонали четырехугольника
параллельны сторонам параллелограммов.
Середины M и N диагоналей AC и BD выпуклого
четырехугольника ABCD не совпадают. Прямая MN пересекает
стороны AB и CD в точках M1 и N1. Докажите, что
если MM1 = NN1, то AD| BC.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 110]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке