Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Велосипедист путешествует по кольцевой дороге, двигаясь в одном направлении. Каждый день он проезжает 71 км и останавливается ночевать на обочине. На дороге есть аномальная зона длины 71 км. Если велосипедист останавливается в ней на ночлег на расстоянии y км от одной границы зоны, просыпается он в противоположном месте зоны, на расстоянии y км от другой её границы. Докажите, что в каком бы месте велосипедист ни начал своё путешествие, рано или поздно он остановится в нём на ночлег или же в нём проснётся.

Вниз   Решение


Некоторый алфавит состоит из 6 букв, которые для передачи по телеграфу кодированы так:

.          -          . .          - -          . -          -   .

При передаче одного слова не сделали промежутков, отделяющих букву от буквы, так что получилась сплошная цепочка из точек и тире, содержащая 12 знаков. Сколькими способами можно прочитать переданное слово?

ВверхВниз   Решение


У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?

ВверхВниз   Решение


Существуют ли такие попарно различные натуральные числа m, n, p, q, что  m + n = p + q  и  

ВверхВниз   Решение


В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

ВверхВниз   Решение


По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
  а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
  б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.

ВверхВниз   Решение


Окружность Ω1 проходит через центр окружности Ω2. Из точки C, лежащей на Ω1, проведены касательные к Ω2, вторично пересекающие Ω1 в точках A и B. Докажите, что отрезок AB перпендикулярен линии центров окружностей.

ВверхВниз   Решение


Докажите, что не существует многочлена степени не ниже двух с целыми неотрицательными коэффициентами, значение которого при любом простом p является простым числом.

ВверхВниз   Решение


Пусть AL – биссектриса треугольника ABC, O – центр описанной около этого треугольника окружности, D – такая точка на стороне AC, что  AD = AB.  Докажите, что прямые AO и LD перпендикулярны.

ВверхВниз   Решение


В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?

ВверхВниз   Решение


Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.

ВверхВниз   Решение


Сторону АВ треугольника АВС продолжили за вершину В и выбрали на луче АВ точку А1 так, что точка В – середина отрезка АА1 . Сторону ВС продолжили за вершину С и отметили на продолжении точку В1 так, что С – середина ВВ1 . Аналогично, продолжили сторону СА за вершину А и отметили на продолжении точку С1 так, что А – середина СС1 . Найдите площадь треугольника А1В1С1 , если площадь треугольника АВС равна1.

ВверхВниз   Решение


Дано натуральное число  n > 1.  Для каждого делителя d числа  n + 1,  Петя разделил число n на d с остатком и записал на доску неполное частное, а в тетрадь – остаток. Докажите, что наборы чисел на доске и в тетради совпадают.

ВверхВниз   Решение


Пусть AD и AE — биссектрисы внутреннего и внешнего углов треугольника ABC и Sa — окружность с диаметром DE, окружности Sb и Sc определяются аналогично. Докажите, что:
а) окружности Sa, Sb и Sc имеют две общие точки M и N, причем прямая MN проходит через центр описанной окружности треугольника ABC;
б) проекции точки M (и точки N) на стороны треугольника ABC образуют правильный треугольник.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 56]      



Задача 57144  (#07.016)

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 5
Классы: 8,9

Пусть AD и AE — биссектрисы внутреннего и внешнего углов треугольника ABC и Sa — окружность с диаметром DE, окружности Sb и Sc определяются аналогично. Докажите, что:
а) окружности Sa, Sb и Sc имеют две общие точки M и N, причем прямая MN проходит через центр описанной окружности треугольника ABC;
б) проекции точки M (и точки N) на стороны треугольника ABC образуют правильный треугольник.
Прислать комментарий     Решение


Задача 57145  (#07.016B)

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 5
Классы: 8,9

Докажите, что изодинамические центры лежат на прямой KO, где O — центр описанной окружности, K — точка Лемуана.
Прислать комментарий     Решение


Задача 57146  (#07.017)

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 5
Классы: 8,9

Треугольник ABC правильный, M — некоторая точка. Докажите, что если числа AM, BM и CM образуют геометрическую прогрессию, то знаменатель этой прогрессии меньше 2.
Прислать комментарий     Решение


Задача 57147  (#07.018)

Темы:   [ ГМТ и вписанный угол ]
[ Углы между биссектрисами ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3+
Классы: 8,9

На окружности фиксированы точки A и B, а точка C перемещается по этой окружности. Найдите множество точек пересечения: а) высот; б) биссектрис треугольников ABC.
Прислать комментарий     Решение


Задача 57148  (#07.019)

Темы:   [ ГМТ и вписанный угол ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3
Классы: 8,9

Точка P перемещается по описанной окружности квадрата ABCD. Прямые AP и BD пересекаются в точке Q, а прямая, проходящая через точку Q параллельно AC, пересекает прямую BP в точке X. Найдите ГМТ X.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .