Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Чему равны числа Фибоначчи с отрицательными номерами F-1, F-2, ..., F-n,...?


Вниз   Решение


При помощи формулы Лежандра (см. задачу 60553) докажите, что число      целое.

ВверхВниз   Решение


Может ли вершина параболы  у = 4х² – 4(а + 1)х + а  лежать во второй координатной четверти при каком-нибудь значении а?

ВверхВниз   Решение


Найдите радиусы вписанной и описанной окружностей треугольника со сторонами 13, 13, 24 и расстояние между центрами этих окружностей.

ВверхВниз   Решение


Даны положительные рациональные числа a, b. Один из корней трёхчлена  x² – ax + b  – рациональное число, в несократимой записи имеющее вид  m/n.  Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.

ВверхВниз   Решение


Докажите следующие свойства чисел Фибоначчи:

а) F1 + F2 +...+ Fn = Fn + 2 - 1; в) F2 + F4 +...+ F2n = F2n + 1 - 1;
б) F1 + F3 +...+ F2n - 1 = F2n; г) F12 + F22 +...+ Fn2 = FnFn + 1.

ВверхВниз   Решение


Четырехугольник ABCD описан около окружности. Биссектрисы внешних углов A и B пересекаются в точке K , внешних углов B и C – в точке L , внешних углов C и D – в точке M , внешних углов D и A – в точке N . Пусть K1 , L1 , M1 , N1 – точки пересечения высот треугольников ABK , BCL , CDM , DAN соответственно. Докажите, что четырехугольник K1L1M1N1 – параллелограмм.

ВверхВниз   Решение


Пусть p – простое число и представление числа n в p-ичной системе имеет вид:   n = akpk + ak–1pk–1 + ... + a1p1 + a0.
Найдите формулу, выражающую показатель αp, с которым это число p входит в каноническое разложение n!, через n, p, и коэффициенты ak.

ВверхВниз   Решение


Докажите, что число p входит в разложение n! с показателем, не превосходящим  

ВверхВниз   Решение


Точка P перемещается по описанной окружности квадрата ABCD. Прямые AP и BD пересекаются в точке Q, а прямая, проходящая через точку Q параллельно AC, пересекает прямую BP в точке X. Найдите ГМТ X.

ВверхВниз   Решение


Докажите, что изодинамические центры лежат на прямой KO, где O — центр описанной окружности, K — точка Лемуана.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 56]      



Задача 57144  (#07.016)

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 5
Классы: 8,9

Пусть AD и AE — биссектрисы внутреннего и внешнего углов треугольника ABC и Sa — окружность с диаметром DE, окружности Sb и Sc определяются аналогично. Докажите, что:
а) окружности Sa, Sb и Sc имеют две общие точки M и N, причем прямая MN проходит через центр описанной окружности треугольника ABC;
б) проекции точки M (и точки N) на стороны треугольника ABC образуют правильный треугольник.
Прислать комментарий     Решение


Задача 57145  (#07.016B)

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 5
Классы: 8,9

Докажите, что изодинамические центры лежат на прямой KO, где O — центр описанной окружности, K — точка Лемуана.
Прислать комментарий     Решение


Задача 57146  (#07.017)

Тема:   [ ГМТ - окружность или дуга окружности ]
Сложность: 5
Классы: 8,9

Треугольник ABC правильный, M — некоторая точка. Докажите, что если числа AM, BM и CM образуют геометрическую прогрессию, то знаменатель этой прогрессии меньше 2.
Прислать комментарий     Решение


Задача 57147  (#07.018)

Темы:   [ ГМТ и вписанный угол ]
[ Углы между биссектрисами ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3+
Классы: 8,9

На окружности фиксированы точки A и B, а точка C перемещается по этой окружности. Найдите множество точек пересечения: а) высот; б) биссектрис треугольников ABC.
Прислать комментарий     Решение


Задача 57148  (#07.019)

Темы:   [ ГМТ и вписанный угол ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3
Классы: 8,9

Точка P перемещается по описанной окружности квадрата ABCD. Прямые AP и BD пересекаются в точке Q, а прямая, проходящая через точку Q параллельно AC, пересекает прямую BP в точке X. Найдите ГМТ X.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 56]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .