ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Повесьте картину на веревочке на два гвоздя так, чтобы при вытаскивании любого из гвоздей картина падала.

Вниз   Решение


Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

ВверхВниз   Решение


Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что AKB'+ BKA'= ALB'+ BLA'=180o . Докажите, что прямая KL равноудалена от точек A' , B' , C' .

ВверхВниз   Решение


Автор: Шмаров В.

Дан выпуклый четырёхугольник ABCD . Пусть P и Q – точки пересечения лучей BA и CD , BC и AD соответственно, а H – проекция D на PQ . Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда вписанные окружности треугольников ADP и CDQ видны из точки H под равными углами.

ВверхВниз   Решение


В треугольнике ABC окружность, проходящая через вершины A и B, касается прямой BC, а окружность, проходящая через вершины B и C, касается прямой AB и второй раз пересекает первую окружность в точке K. Пусть O – центр описанной окружности треугольника ABC. Докажите, что угол BKO – прямой.

ВверхВниз   Решение


Через точку на стороне треугольника проведена прямая, параллельная другой стороне, до пересечения с третьей стороной треугольника. Через полученную точку проведена прямая, параллельная первой стороне треугольника и т.д. Докажите, что
  а) если исходная точка сопадает с серединой стороны треугольника, то четвёртая точка, полученная таким способом, совпадёт с исходной;
  б) если исходная точка отлична от середины стороны треугольника, то седьмая точка, полученная таким способом, совпадёт с исходной.

ВверхВниз   Решение


С помощью одной двусторонней линейки восставьте перпендикуляр к данной прямой l в данной точке A.

Вверх   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 101]      



Задача 57275  (#08.077)

Тема:   [ Построения одной линейкой ]
Сложность: 5
Классы: 8,9

Даны две параллельные прямые и точка P. С помощью одной линейки проведите через точку P прямую, параллельную данным прямым.
Прислать комментарий     Решение


Задача 57276  (#08.078)

Тема:   [ Построения одной линейкой ]
Сложность: 5
Классы: 8,9

Даны окружность, ее диаметр AB и точка P. С помощью одной линейки проведите через точку P перпендикуляр к прямой AB.
Прислать комментарий     Решение


Задача 57277  (#08.079)

Тема:   [ Построения одной линейкой ]
Сложность: 6
Классы: 8,9

Докажите, что если на плоскости даны какая-нибудь окружность S и ее центр O, то с помощью одной линейки можно:
а) из любой точки провести прямую, параллельную данной прямой, и опустить на данную прямую перпендикуляр;
б) на данной прямой от данной точки отложить отрезок, равный данному отрезку;
в) построить отрезок длиной ab/c, где a, b, c — длины данных отрезков;
г) построить точки пересечения данной прямой l с окружностью, центр которой — данная точка A, а радиус равен длине данного отрезка;
д) построить точки пересечения двух окружностей, центры которых — данные точки, а радиусы — данные отрезки.
Прислать комментарий     Решение


Задача 57278  (#08.080)

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 3
Классы: 8,9

Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля.
а) Постройте биссектрису данного угла AOB.
б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA.
Прислать комментарий     Решение


Задача 57279  (#08.081)

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 3
Классы: 8,9

С помощью одной двусторонней линейки восставьте перпендикуляр к данной прямой l в данной точке A.
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .