Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

В прямоугольник ABCD вписаны два различных прямоугольника, имеющих общую вершину K на стороне AB. Докажите, что сумма их площадей равна площади прямоугольника ABCD.

Вниз   Решение


В треугольник  Ta = $ \triangle$A1A2A3 вписан треугольник  Tb = $ \triangle$B1B2B3, а в треугольник Tb вписан треугольник  Tc = $ \triangle$C1C2C3, причем стороны треугольников Ta и Tc параллельны. Выразите площадь треугольника Tb через площади треугольников Ta и Tc.

ВверхВниз   Решение


Пусть a, b и c — длины сторон треугольника ABC, na, nb и  nc — векторы единичной длины, перпендикулярные соответствующим сторонам и направленные во внешнюю сторону. Докажите, что

a3na + b3nb + c3nc = 12S . $\displaystyle \overrightarrow{MO}$,

где S — площадь, M — точка пересечения медиан, O — центр описанной окружности треугольника ABC.

ВверхВниз   Решение


а) Докажите, что расстояния от любой точки параболы до фокуса и до директрисы равны.
б) Докажите, что множество точек, для которых расстояния до некоторой фиксированной точки и до некоторой фиксированной прямой равны, является параболой.

ВверхВниз   Решение


В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).

ВверхВниз   Решение


Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.

ВверхВниз   Решение


Постройте окружность, проходящую через две данные точки и касающуюся данной окружности (или прямой).

ВверхВниз   Решение


Докажите, что окружность девяти точек треугольника ABC, вершины которого лежат на равнобочной гиперболе, проходит через центр O гиперболы.

ВверхВниз   Решение


По трем прямолинейным дорогам с постоянными скоростями идут три пешехода. В начальный момент времени они не находились на одной прямой. Докажите, что они могут оказаться на одной прямой не более двух раз.

ВверхВниз   Решение


Пусть a1, a2, ..., a2n + 1 — векторы длины 1. Докажите, что в сумме c = ±a1±a2±...±a2n + 1 знаки можно выбрать так, что |c|$ \le$1.

ВверхВниз   Решение


Точки A, B и O не лежат на одной прямой. Проведите через точку O прямую l так, чтобы сумма расстояний от нее до точек A и B была: а) наибольшей; б) наименьшей.

ВверхВниз   Решение


Докажите, что  SABC $ \leq$ AB . BC/2.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 103]      



Задача 57299  (#09.000.1)

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  SABC $ \leq$ AB . BC/2.
Прислать комментарий     Решение


Задача 57300  (#09.000.2)

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  SABCD $ \leq$ (AB . BC + AD . DC)/2.
Прислать комментарий     Решение


Задача 57301  (#09.000.3)

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.
Прислать комментарий     Решение


Задача 57302  (#09.000.4)

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 2-
Классы: 8,9

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.
Прислать комментарий     Решение


Задача 55158  (#09.000.5)

Тема:   [ Неравенство треугольника ]
Сложность: 3
Классы: 8,9

Докажите, что любая диагональ четырёхугольника меньше половины его периметра.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 103]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .