Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Автор: Ивлев Ф.

Дан треугольник $ABC$. Пусть $I$ – центр вневписанной окружности, касающейся стороны $AB$, а $A_1$ и $B_1$ – точки касания двух других вневписанных окружностей со сторонами $BC$ и $AC$ соответственно. Пусть $M$ – середина отрезка $IC$, а отрезки $AA_1$ и $BB_1$ пересекаются в точке $N$. Докажите, что точки $N$, $B_1$, $A$ и $M$ лежат на одной окружности.

Вниз   Решение


Вневписанные окружности касаются сторон AB и AC треугольника ABC в точках P и Q соответственно. Точка L – середина PQ, точка M – середина BC. Точки L1 и L2 симметричны точке L относительно середин отрезков BM и CM соответственно. Докажите, что  L1P = L2Q.

ВверхВниз   Решение


Кролик, готовясь к приходу гостей, повесил в трёх углах своей многоугольной норы по лампочке. Пришедшие к нему Винни-Пух и Пятачок увидели, что не все горшочки с мёдом освещены. Когда они полезли за мёдом, две лампочки разбились. Кролик перевесил оставшуюся лампочку в некоторый угол так, что вся нора оказалась освещена. Могло ли такое быть? (Если да, нарисуйте пример, если нет, обоснуйте ответ.)

ВверхВниз   Решение


Автор: Лифшиц Ю.

Мишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?

ВверхВниз   Решение


Автор: Мухин Д.Г.

Окружность касается боковых сторон трапеции $ABCD$ в точках $B$ и $C$, а её центр лежит на $AD$. Докажите, что диаметр окружности меньше средней линии трапеции.

ВверхВниз   Решение


Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

ВверхВниз   Решение


На экране компьютера сгенерирована некоторая конечная последовательность нулей и единиц. С ней можно производить следующую операцию: набор цифр "01" заменять на набор цифр "1000". Может ли такой процесс замен продолжаться бесконечно или когда-нибудь он обязательно прекратится?

ВверхВниз   Решение


Разрежьте фигуру, изображённую на рисунке, на две части, из которых можно сложить треугольник.

ВверхВниз   Решение


Дан вписанный четырёхугольник $ABCD$. Пусть $M_{ac}$ – середина диагонали $AC$; $H_d$, $H_b$ – ортоцентры треугольников $ABC$, $ADC$ соответственно; $P_d$, $P_b$ – проекции $H_d$ и $H_b$ на $BM_{ac}$ и $DM_{ac}$ соответственно. Аналогично определим $P_a$, $P_c$ для диагонали $BD$. Докажите, что $P_a$, $P_b$, $P_c$, $P_d$ лежат на одной окружности.

ВверхВниз   Решение


На стороне AB прямоугольника ABCD выбрана точка M . Через эту точку проведён перпендикуляр к прямой CM , который пересекает сторону  AD в точке  E . Точка P  — основание перпендикуляра, опущенного из точки  M на прямую  CE . Найдите угол  APB .

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты AA1 и BB1 . Точки K и M – середины отрезков AB и A1B1 соответственно. Отрезки AA1 и KM пересекаются в точке L . Докажите, что точки A , K , L и B1 лежат на одной окружности.

ВверхВниз   Решение


У Кая есть ледяная пластинка в форме "уголка" (см. рисунок). Снежная Королева потребовала от Кая разрезать ее на четыре равные части. Как ему это сделать?

ВверхВниз   Решение


На одной стороне угла с вершиной O взята точка A, а на другой – точки B и C, причём точка B лежит между O и C. Проведена окружность с центром O1, вписанная в треугольник OAB, и окружность с центром O2, касающаяся стороны AC и продолжений сторон OA и OC треугольника AOC. Докажите, что если  O1A = O2A,  то треугольник ABC равнобедренный.

ВверхВниз   Решение


Автор: Белухов Н.

В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение $a?b$ обозначает одно из следующих:  $a - b,  b - a$  или  $a + b$.  Вам неизвестно, как записываются числа в этом государстве, но переменные $a, b$ и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!", "?" записать выражение, которое гарантированно равно  $20a - 18b$.

ВверхВниз   Решение


Из точки M, лежащей внутри данного треугольника ABC, опущены перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина     принимает наименьшее значение?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 57539

Темы:   [ Экстремальные точки треугольника ]
[ Теоремы Чевы и Менелая ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9

Точки A1, B1 и C1 взяты на сторонах BC, CA и AB треугольника ABC, причём отрезки AA1, BB1 и CC1 пересекаются в одной точке M.
При каком положении точки M величина  MA1/AA1·MB1/BB1·MC1/CC1 максимальна?

Прислать комментарий     Решение

Задача 57540

Темы:   [ Экстремальные точки треугольника ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через высоту и основание) ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 8,9,10

Из точки M, лежащей внутри данного треугольника ABC, опущены перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина     принимает наименьшее значение?

Прислать комментарий     Решение

Задача 57541

 [Точка Торричелли]
Темы:   [ Экстремальные точки треугольника ]
[ Точка Торричелли ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 6
Классы: 8,9,10

Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)
Прислать комментарий     Решение


Задача 57542

Темы:   [ Экстремальные точки треугольника ]
[ Выход в пространство ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Уравнение плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 6
Классы: 9,10,11

Найдите внутри треугольника ABC точку O, для которой сумма квадратов расстояний от нее до сторон треугольника минимальна.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .