ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите сумму 1·1! + 2·2! + 3·3! + … + n·n!. а) Через точки P и Q проведены тройки прямых.
Обозначим их точки пересечения так, как показано на рис.
Докажите, что прямые KL, AC и MN пересекаются в одной точке (или
параллельны).
Внутри окружности с центром O дана точка A. Найдите точку M
окружности, для которой угол OMA максимален.
На прямых BC, CA и AB взяты точки A1, B1
и C1. Пусть P1 — произвольная точка прямой BC,
P2 — точка пересечения прямых P1B1 и AB, P3 — точка
пересечения прямых P2A1 и CA, P4 — точка
пересечения
P3C1 и BC и т. д. Докажите, что точки P7 и P1
совпадают.
Дан четырёхугольник ABCD, вписанный в окружность ω. Касательная к ω, проведённая через точку A, пересекает продолжение стороны BC за точку B в точке K, а касательная к ω, проведённая через точку B, пересекает продолжение стороны AD за точку A в точке M. Известно, что AM = AD и BK = BC. Докажите, что ABCD – трапеция. Из промежутка (22n, 23n) выбрано 22n–1 + 1 нечётное число. Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству P² + Q² = R². Докажите, что все корни одного из многочленов третьей степени – действительные. Вписанная (или вневписанная) окружность
треугольника ABC касается прямых BC, CA и AB в точках A1, B1
и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются
в одной точке.
В городе 10 улиц, параллельных друг другу, и 10 улиц, пересекающих
их под прямым углом. Какое наименьшее число поворотов может иметь
замкнутый автобусный маршрут, проходящий через все перекрестки?
Какое наибольшее число точек можно поместить на отрезке длиной 1
так, чтобы на любом отрезке длиной d, содержащемся в этом отрезке,
лежало не больше 1 + 1000d2 точек?
Точки A, B и O не лежат на одной прямой. Проведите через
точку O прямую l так, чтобы сумма расстояний от нее до точек A
и B была: а) наибольшей; б) наименьшей.
Даны прямая l и точки P и Q, лежащие по одну сторону от нее.
На прямой l берем точку M и в треугольнике PQM проводим высоты
PP' и QQ'. При каком положении точки M длина отрезка P'Q'
минимальна?
Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC. На плоскости даны прямая l и точки A и B, лежащие по разные
стороны от нее. Постройте окружность, проходящую через точки A
и B так, чтобы прямая l высекала на ней хорду наименьшей длины.
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
Среди всех многоугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
Дан выпуклый многоугольник
A1...An. Докажите, что точка
многоугольника, для которой максимальна сумма расстояний от нее до
всех вершин, является вершиной.
Внутри окружности с центром O дана точка A. Найдите точку M
окружности, для которой угол OMA максимален.
На плоскости даны прямая l и точки A и B, лежащие по разные
стороны от нее. Постройте окружность, проходящую через точки A
и B так, чтобы прямая l высекала на ней хорду наименьшей длины.
Даны прямая l и точки P и Q, лежащие по одну сторону от нее.
На прямой l берем точку M и в треугольнике PQM проводим высоты
PP' и QQ'. При каком положении точки M длина отрезка P'Q'
минимальна?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке