Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Каждые две из 13 ЭВМ соединены своим проводом.
Можно ли раскрасить каждый из этих проводов в один из 12 цветов так, чтобы из каждой ЭВМ выходило 12 проводов разного цвета?

Вниз   Решение


Докажите, что если a > b, то ma < mb.

ВверхВниз   Решение


Увеличится или уменьшится сумма  ,  если все слагаемые в ней заменить на 1/150?

ВверхВниз   Решение


По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных единице.
Докажите, что сумма всех попарных произведений соседних чисел не больше ¼.

ВверхВниз   Решение


Периметры треугольников ABM, BCM и ACM, где M — точка пересечения медиан треугольника ABC, равны. Докажите, что треугольник ABC правильный.

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:
+ .

ВверхВниз   Решение


  а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги.
Сколькими cпособами можно проехать от A до C?
  б) В Стране Чудес построили еще один город D и несколько новых дорог – две из A в D и две из D в C.
Сколькими способами можно теперь добраться из города A в город C?

ВверхВниз   Решение


Дана шахматная доска. Разрешается перекрашивать в другой цвет сразу все клетки какой-либо горизонтали или вертикали.
Может ли при этом получиться доска, у которой ровно одна чёрная клетка?

ВверхВниз   Решение


Докажите неравенство     для положительных значений переменных.

ВверхВниз   Решение


Докажите, что   .

ВверхВниз   Решение


Автор: Нилов Ф.

Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.

ВверхВниз   Решение


Докажите, что расстояние от точки (x0, y0) до прямой ax + by + c = 0 равно $ {\frac{\vert ax_0+by_0+c\vert}{\sqrt{a^2+b^2}}}$.

ВверхВниз   Решение


Пусть P и Q — первая и вторая точки Брокара треугольника ABC. Прямые CP и BQAP и CQBP и AQ пересекаются в точках A1, B1 и C1. Докажите, что описанная окружность треугольника A1B1C1 проходит через точки P и Q.

ВверхВниз   Решение


Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.

ВверхВниз   Решение


Диаметры AB и CD окружности S перпендикулярны. Хорда EA пересекает диаметр CD в точке K, хорда EC пересекает диаметр AB в точке L. Докажите, что если CK : KD = 2 : 1, то AL : LB = 3 : 1.

ВверхВниз   Решение


В треугольнике ABC угол C прямой. Докажите, что при гомотетии с центром C и коэффициентом 2 вписанная окружность переходит в окружность, касающуюся описанной окружности.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 57658

Тема:   [ Метод координат на плоскости ]
Сложность: 3-
Классы: 8,9,10

Докажите, что расстояние от точки (x0, y0) до прямой ax + by + c = 0 равно $ {\frac{\vert ax_0+by_0+c\vert}{\sqrt{a^2+b^2}}}$.
Прислать комментарий     Решение


Задача 57659

Темы:   [ Метод координат на плоскости ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9,10

а) Докажите, что площадь треугольника с вершинами в точках (0, 0), (x1, y1) и (x2, y2) равна $ {\frac{1}{2}}$| x1y2x2y1|.
б) Докажите, что площадь треугольника с вершинами в точках (x1, y1), (x2, y2) и (x3, y3) равна

$\displaystyle {\textstyle\frac{1}{2}}$| x1y2 + x2y3 + x3y1x2y1x1y3x3y2|.


Прислать комментарий     Решение

Задача 57660

Темы:   [ Метод координат на плоскости ]
[ Вписанные и описанные окружности ]
[ Рациональные и иррациональные числа ]
Сложность: 3
Классы: 8,9,10,11

Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.
Прислать комментарий     Решение


Задача 57661

Темы:   [ Метод координат на плоскости ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9,10

Диаметры AB и CD окружности S перпендикулярны. Хорда EA пересекает диаметр CD в точке K, хорда EC пересекает диаметр AB в точке L. Докажите, что если CK : KD = 2 : 1, то AL : LB = 3 : 1.
Прислать комментарий     Решение


Задача 57662

Темы:   [ Метод координат на плоскости ]
[ Гомотетичные окружности ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9,10

В треугольнике ABC угол C прямой. Докажите, что при гомотетии с центром C и коэффициентом 2 вписанная окружность переходит в окружность, касающуюся описанной окружности.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .