ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK. В какое наименьшее количество цветов можно покрасить натуральные числа так, чтобы любые два числа, отличающиеся на 2 или в два раза, были покрашены в разные цвета? Пусть ABC – остроугольный треугольник, в котором AC < BC; M – середина стороны AB. В описанной окружности Ω треугольника ABC, проведён диаметр CC'. Прямая CM пересекает прямые AC' и BC' в точках K и L соответственно. Перпендикуляр к прямой AC', проведённый через точку K, перпендикуляр к прямой BC', проведённый через точку L, и прямая AB образуют треугольник Δ. Докажите, что описанная окружность ω треугольника Δ касается окружности Ω. Биссектрисы BD и CE треугольника ABC пересекаются в точке O. Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали
нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только
сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов. Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой. Докажите, что количество положительных корней многочлена f(x) = anxn + ... + a1x + a0 не превосходит числа перемен знака в последовательности an, ..., a1, a0.
Дан выпуклый четырёхугольник площади S. Внутри него выбирается точка и отображается симметрично относительно середин его сторон. Получаются четыре вершины нового четырёхугольника. Найдите его площадь.
Мальчик едет на самокате от одной автобусной остановки до другой и смотрит в зеркало, не появился ли сзади автобус. Как только мальчик замечает автобус, он может изменить направление движения. При каком наибольшем расстоянии между остановками мальчик гарантированно не упустит автобус, если он знает, что едет со скоростью, втрое меньшей скорости автобуса, и способен увидеть автобус на расстоянии не более 2 км? Известно, что некоторый многочлен в рациональных точках принимает рациональные значения. На острове 100 рыцарей и 100 лжецов. У каждого из них есть хотя бы один друг. Однажды ровно 100 человек сказали: "Все мои друзья – рыцари", и ровно 100 человек сказали: "Все мои друзья – лжецы". Каково наименьшее возможное количество пар друзей, один из которых рыцарь, а другой лжец?
Точки M и N лежат на сторонах соответственно AB и AC треугольника ABC, причём AM = CN и AN = BM. Докажите, что площадь четырёхугольника BMNC по крайней мере в три раза больше площади треугольника AMN.
Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1 ≤ P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1 ≤ P2S2 + P3S3 + P4S4. Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB. Барон Мюнхгаузен придумал теорему: если многочлен xn−axn−1+bxn−2+… имеет n натуральных корней, то на плоскости найдутся a прямых, у которых ровно b точек пересечения друг с другом. Не ошибается ли барон? В выпуклом пятиугольнике ABCDE сторона BC параллельна
диагонали AD,
CD || BE,
DE || AC и
AE || BD.
Докажите, что
AB || CE.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]
Пусть E и F — середины сторон AB и CD четырехугольника
ABCD, K, L, M и N — середины отрезков AF, CE,
BF и DE. Докажите, что KLMN — параллелограмм.
Дано n попарно не сонаправленных векторов (n
Даны четыре попарно непараллельных вектора, сумма которых равна
нулю. Докажите, что из них можно составить:
а) невыпуклый четырехугольник; б) самопересекающуюся
четырехзвенную ломаную.
Даны четыре попарно непараллельных вектора a, b, c и d, сумма которых равна нулю. Докажите, что
|a| + |b| + |c| + |d| > |a + b| + |a + c| + |a + d|.
В выпуклом пятиугольнике ABCDE сторона BC параллельна
диагонали AD,
CD || BE,
DE || AC и
AE || BD.
Докажите, что
AB || CE.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке