ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны точка X и правильный треугольник ABC. Докажите, что из отрезков
XA, XB и XC можно составить треугольник, причем этот треугольник
вырожденный тогда и только тогда, когда точка X лежит на описанной окружности
треугольника ABC (Помпею).
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]
Правильные треугольники ABC, CDE, EHK (вершины обходятся в направлении против часовой стрелки) расположены на плоскости так,
что
а) Для данного треугольника ABC, все углы которого меньше
120o,
найдите точку, сумма расстояний от которой до вершин минимальна.
Даны точка X и правильный треугольник ABC. Докажите, что из отрезков
XA, XB и XC можно составить треугольник, причем этот треугольник
вырожденный тогда и только тогда, когда точка X лежит на описанной окружности
треугольника ABC (Помпею).
Шестиугольник ABCDEF вписан в окружность радиуса R, причем
AB = CD = EF = R. Докажите, что середины сторон BC, DE и FA образуют
правильный треугольник.
На сторонах выпуклого центрально симметричного шестиугольника ABCDEF
внешним образом построены правильные треугольники. Докажите, что
середины отрезков, соединяющих вершины соседних треугольников, образуют
правильный шестиугольник.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 53]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке