ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

У Кати и Маши расчёски одинаковой длины. У каждой расчёски все зубчики одинаковые, а расстояния между зубчиками равны ширине зубчика. В Катиной расчёске 11 зубчиков (см. рис.). Сколько зубчиков в Машиной расчёске, если они в пять раз уже зубчиков Катиной расчёски?

Вниз   Решение


Назовем выпуклый семиугольник особым, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 58115  (#22.005)

Темы:   [ Выпуклые многоугольники ]
[ Малые шевеления ]
Сложность: 4
Классы: 8,9

Назовем выпуклый семиугольник особым, если три его диагонали пересекаются в одной точке. Докажите, что, слегка пошевелив одну из вершин особого семиугольника, можно получить неособый семиугольник.
Прислать комментарий     Решение


Задача 58116  (#22.005B)

Тема:   [ Выпуклые многоугольники ]
Сложность: 4+
Классы: 8,9

Выпуклый многоугольник A1...An лежит внутри окружности S1, а выпуклый многоугольник B1...Bm — внутри S2. Докажите, что если эти многоугольники пересекаются, то одна из точек A1, ..., An лежит внутри S2 или одна из точек B1, ..., Bm лежит внутри S1.
Прислать комментарий     Решение


Задача 58117  (#22.007)

Тема:   [ Выпуклые многоугольники ]
Сложность: 7
Классы: 8,9

Докажите, что существует такое число N, что среди любых N точек, никакие три из которых не лежат на одной прямой, можно выбрать 100 точек, являющихся вершинами выпуклого многоугольника.
Прислать комментарий     Решение


Задача 58118  (#22.007.1)

Тема:   [ Выпуклые многоугольники ]
Сложность: 7
Классы: 8,9

Выпуклый n-угольник разрезан на треугольники непересекающимися диагоналями. Рассмотрим преобразование такого разбиения, при котором треугольники ABC и ACD заменяются на треугольники ABD и BCD. Пусть P(n) — наименьшее число преобразований, за которое любое разбиение можно перевести в любое другое. Докажите, что: а) P(n)$ \ge$n - 3; б) P(n)$ \le$2n - 7; в) P(n)$ \le$2n - 10 при n$ \ge$13.
Прислать комментарий     Решение


Задача 58119  (#22.008)

Тема:   [ Выпуклые многоугольники ]
Сложность: 6
Классы: 8,9

Докажите, что в любом выпуклом многоугольнике, кроме параллелограмма, можно выбрать три стороны, при продолжении которых образуется треугольник, объемлющий данный многоугольник.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .