Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Четырёхугольник описан около окружности. Докажите, что прямые, соединяющие соседние точки касания и не пересекающиеся в одной из этих точек, пересекаются на продолжении диагонали или параллельны ей.

Вниз   Решение


На сторонах параллелограмма внешним образом построены квадраты. Докажите, что их центры образуют квадрат.

ВверхВниз   Решение


Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

ВверхВниз   Решение


На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.

ВверхВниз   Решение


Докажите, что  $ {\frac{1}{ab}}$ + $ {\frac{1}{bc}}$ + $ {\frac{1}{ca}}$ = $ {\frac{1}{2Rr}}$.

ВверхВниз   Решение


ABC - прямоугольный треугольник с прямым углом C. Докажите, что  ma2 + mb2 > 29r2.

ВверхВниз   Решение


Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)?

ВверхВниз   Решение


Аудитория имеет форму правильного шестиугольника со стороной 3 м. В каждом углу установлен храпометр, определяющий число спящих студентов на расстоянии, не превышающем 3 м. Сколько всего спящих студентов в аудитории, если сумма показаний храпометров равна 7?

ВверхВниз   Решение


Пусть E и F — середины сторон BC и AD параллелограмма ABCD. Найдите площадь четырехугольника, образованного прямыми AE, ED, BF и FC, если известно, что площадь ABCD равна S.

ВверхВниз   Решение


Докажите, что если бесконечное множество точек обладает тем свойством, что расстояние между любыми двумя точками является целым числом, то все эти точки лежат на одной прямой.

ВверхВниз   Решение


Дана неравнобокая трапеция ABCD. Точка A1 – это точка пересечения описанной окружности треугольника BCD с прямой AC,
отличная от C. Аналогично определяются точки B1, C1, D1. Докажите, что A1B1C1D1 – тоже трапеция.

ВверхВниз   Решение


Докажите, что композиция двух поворотов на углы, в сумме не кратные  360o, является поворотом. В какой точке находится его центр и чему равен угол поворота? Исследуйте также случай, когда сумма углов поворотов кратна  360o.

ВверхВниз   Решение


Докажите, что существует проективное отображение, которое три данные точки одной прямой переводит в три данные точки другой прямой.


ВверхВниз   Решение


В остроугольном треугольнике ABC наибольшая из высот AH равна медиане BM. Докажите, что  $ \angle$B $ \leq$ 60o.

ВверхВниз   Решение


Решите неравенство:
|x + 2000| < |x - 2001|.

ВверхВниз   Решение


Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.).


Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 58349  (#28.030)

Тема:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
Сложность: 4
Классы: 9,10

Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.).


Прислать комментарий     Решение

Задача 58350  (#28.031)

Темы:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
[ Инверсия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5
Классы: 9,10,11

Даны четыре окружности S1, S2, S3, S4. Пусть S1 и S2 пересекаются в точках A1 и A2, S2 и S3 — в точках B1 и B2, S3 и S4 — в точках C1 и C2, S4 и S1 — в точках D1 и D2 (рис.). Докажите, что если точки A1, B1, C1, D1 лежат на одной окружности S (или прямой), то и точки A2, B2, C2, D2 лежат на одной окружности (или прямой).


Прислать комментарий     Решение

Задача 58351  (#28.032)

Темы:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
[ Инверсия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Пятиугольники ]
Сложность: 6
Классы: 9,10,11

Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.


Прислать комментарий     Решение

Задача 58352  (#28.033)

Тема:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
Сложность: 6
Классы: 9,10

На плоскости взяты шесть точек A1, A2, A3, B1, B2, B3. Докажите, что если описанные окружности треугольников A1A2B3, A1B2A3 и B1A2A3 проходят через одну точку, то и описанные окружности треугольников B1B2A3, B1A2B3 и A1B2B3 пересекаются в одной точке.
Прислать комментарий     Решение


Задача 58353  (#28.034)

Тема:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
Сложность: 6
Классы: 9,10

На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2. Докажите, что если окружности, описанные около треугольников A1B1C1, A1B2C2, A2B1C2, A2B2C1, проходят через одну точку, то и окружности, описанные около треугольников A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через одну точку.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .