Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Известно, что  z + z–1 = 2 cos α.
  а) Докажите, что  zn + z–n = 2 cos nα.
  б) Как выражается  zn + z–n  через  y = z + z–1?

Вниз   Решение


Известно, что  p > 3  и p – простое число.
  а) Как вы думаете, будет ли хотя бы одно из чисел  p + 1  и  p – 1  делиться на 4?
  б) А на 5?

ВверхВниз   Решение


Найдите радиус окружности, внутри которой расположены две окружности радиуса r и одна окружность радиуса R так, что каждая окружность касается двух других.

ВверхВниз   Решение


Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых.

ВверхВниз   Решение


Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.

ВверхВниз   Решение


На стороне KN параллелограмма KLMN с тупым углом при вершине M построен равносторонний треугольник KTN так, что точки T и M лежат по разные стороны прямой KN . Известно, что расстояния от точек T и K до прямой MN равны соответственно 8 и 5, а расстояние от точки T до прямой LM равно 10. Найдите площадь параллелограмма KLMN .

ВверхВниз   Решение


Докажите, что  n5 + 4n  делится на 5 при любом натуральном n.

ВверхВниз   Решение


В основании пирамиды SABC лежит треугольник ABC , у которого AB=15 , BC=20 , а радиус окружности, описанной около этого треугольника, равен 5 . На сторонах треугольника ABC как на диаметрах построены три сферы, пересекающиеся в точке O . Точка O является центром четвёртой сферы, причём вершина пирамиды S есть точка касания этой сферы с некоторой плоскостью, параллельной плоскости основания ABC . Площадь части четвёртой сферы, которая заключена внутри трёхгранного угла, образованного лучами OA , OB и OC , равна 8π . Найдите объём пирамиды SABC .

ВверхВниз   Решение


На сторонах аффинно правильного многоугольника A1A2...An с центром O внешним образом построены квадраты Aj + 1AjBjCj + 1 (j = 1,..., n). Докажите, что отрезки BjCj и OAj перпендикулярны, а их отношение равно 2$ \bigl($1 - cos(2$ \pi$/n)$ \bigr)$.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 58401

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 6+
Классы: 9,10

Дан не равносторонний треугольник ABC. Точки A1, B1 и C1 выбраны так, что треугольники BA1C, CB1A и AC1B собственно подобны. Докажите, что треугольник A1B1C1 равносторонний тогда и только тогда, когда указанные подобные треугольники являются равнобедренными треугольниками с углом 120o при вершинах A1, B1 и C1.
Прислать комментарий     Решение


Задача 58402

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 6+
Классы: 9,10

На сторонах аффинно правильного многоугольника A1A2...An с центром O внешним образом построены квадраты Aj + 1AjBjCj + 1 (j = 1,..., n). Докажите, что отрезки BjCj и OAj перпендикулярны, а их отношение равно 2$ \bigl($1 - cos(2$ \pi$/n)$ \bigr)$.
Прислать комментарий     Решение


Задача 58396

 [Неравенство Птолемея]
Темы:   [ Теорема Птолемея ]
[ Комплексные числа в геометрии ]
[ Инверсия помогает решить задачу ]
[ Шестиугольники ]
Сложность: 7-
Классы: 9,10,11

а) Докажите, что если A, B, C и D — произвольные точки плоскости, то AB . CD + BC . AD$ \ge$AC . BD (неравенство Птолемея).
б) Докажите, что если A1, A2, ...A6 — произвольные точки плоскости, то

\begin{multline*}
A_1A_4\cdot A_2A_5\cdot A_3A_6\le
A_1A_2\cdot A_3A_6\cdot A_...
...+A_2A_3\cdot A_4A_5\cdot A_1A_6+A_3A_4\cdot A_2A_5\cdot A_1A_6.
\end{multline*}


в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда и только тогда, когда ABCD — (выпуклый) вписанный четырехугольник.
г) Докажите, что неравенство из задачи б) обращается в равенство тогда и только тогда, когда A1...A6 — вписанный шестиугольник.
Прислать комментарий     Решение

Задача 58403

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 7
Классы: 9,10

На сторонах выпуклого n-угольника внешним образом построены правильные n-угольники. Докажите, что их центры образуют правильный n-угольник тогда и только тогда, когда исходный n-угольник аффинно правильный.
Прислать комментарий     Решение


Задача 58404

Тема:   [ Связь величины угла с длиной дуги и хорды ]
Сложность: 7
Классы: 9,10

Вершины треугольника соответствуют комплексным числам a, b и c, лежащим на единичной окружности с центром в нуле. Докажите, что если точки z и w изогонально сопряжены, то z + w + abc$ \bar{z}$$ \bar{w}$ = a + b + c (Морли).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .