Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Значение многочлена  Pn(x) = anxn + an–1xn–1 + ... + a1x + a0    (an ≠ 0)  в точке  x = c  можно вычислить, используя ровно n умножений. Для этого нужно представить многочлен Pn(x) в виде  Pn(x) = (...(anx + an–1)x + ... + a1)x + a0.   Пусть  bn, bn–1, ..., b0  – это значения выражений, которые получаются в процессе вычисления Pn(c), то есть  bn = anbk = cbk+1 + ak  (k = n – 1, ..., 0).  Докажите, что при делении многочлена Pn(x) на  x – c  с остатком, у многочлена в частном коэффициенты будут совпадать с числами  bn–1, ..., b1,  а остатком будет число b0. Таким образом, будет справедливо равенство:
Pn(x) = (x – c)(bnxn–1 + ... + b2x + b1) + b0.

Вниз   Решение


На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что  AB = AK.  Отрезок AK пересекает биссектрису CL в её середине.
Найдите острые углы треугольника ABC.

ВверхВниз   Решение


Докажите, что для любого натурального числа  n > 1  найдутся такие натуральные числа a, b, c, d, что  a + b = c + d = ab – cd = 4n.

ВверхВниз   Решение


На сторонах произвольного треугольника ABC вне его построены равнобедренные треугольники A'BC, AB'C и ABC' с вершинами A', B' и C' и углами $ \alpha$, $ \beta$ и $ \gamma$ при этих вершинах, причем $ \alpha$ + $ \beta$ + $ \gamma$ = 2$ \pi$. Докажите, что углы треугольника A'B'C' равны $ \alpha$/2, $ \beta$/2, $ \gamma$/2.

ВверхВниз   Решение


При каких n многочлен  1 + x² + x4 + ... + x2n–2  делится на  1 + x + x2 + ... + xn–1?

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 141]      



Задача 60969  (#06.046)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Найдите остаток от деления многочлена  P(x) = x81 + x27 + x9 + x³ + x  на
  a)  x – 1;
  б)  x² – 1.

Прислать комментарий     Решение

Задача 60970  (#06.047)

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Докажите, что многочлен  P(x) = (x + 1)6x6 – 2x – 1  делится на  x(x + 1)(2x + 1).

Прислать комментарий     Решение

Задача 60971  (#06.048)

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 8,9,10,11

Многочлен P(x) дает остаток 2 при делении на  x – 1,  и остаток 1 при делении на  x – 2.
Какой остаток дает P(x) при делении на многочлен  (x – 1)(x – 2)?

Прислать комментарий     Решение

Задача 60972  (#06.049)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 8,9,10,11

Найдите необходимое и достаточное условие для того, чтобы выражение  x³ + y³ + z³ + kxyz  делилось на  x + y + z.

Прислать комментарий     Решение

Задача 60973  (#06.050)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10,11

При каких n многочлен  1 + x² + x4 + ... + x2n–2  делится на  1 + x + x2 + ... + xn–1?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 141]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .