ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Известно, что число a + 1/a – целое. Докажите, что число a² + 1/a² – тоже целое. На основании AD трапеции ABCD взята точка E так, что AE = BC. Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно. Докажите, что среди любых шести человек есть либо трое попарно знакомых, либо трое попарно незнакомых.
Найдите произведения следующих формальных
степенных рядов:
Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны. Рассмотрим число а) меньше 1/10; б) меньше 1/12; в) больше 1/15. 9 кг ирисок стоят дешевле 10 рублей, а 10 кг тех же ирисок – дороже 11 рублей. Сколько стоит 1 кг этих ирисок? Каждое из рёбер полного графа с 17 вершинами покрашено в один из трёх цветов. Докажите неравенство: 2n > n. Найдите такие линейные функции P(x) и Q(x), чтобы выполнялось равенство P(x)(2x³ – 7x² + 7x – 2) + Q(x)(2x³ + x² + x – 1) = 2x – 1. Найдите остаток R(x) от деления многочлена xn + x + 2 на x² – 1. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 141]
Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены.
Пусть P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17. Найдите
При каких a и b многочлен P(x) = (a + b)x5 + abx² + 1 делится на x² – 3x + 2?
Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение.
Найдите остаток R(x) от деления многочлена xn + x + 2 на x² – 1.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 141]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке