ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев? Два охотника отправились одновременно навстречу друг другу из двух деревень, расстояние между которыми 18 км. Первый шёл со скоростью 5 км/ч, а второй – 4 км/ч. Первый охотник взял с собой собаку, которая бежала со скоростью 8 км/ч. Собака сразу же побежала навстречу второму охотнику, встретила его, тявкнула, повернула и с той же скоростью побежала навстречу хозяину, и так далее. Так она бегала до тех пор, пока охотники не встретились. Сколько километров она пробежала? Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно. На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю? Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км? Можно ли так расставить знаки "+" или "–" между каждыми двумя соседними цифрами числа 123456789, чтобы полученное выражение равнялось нулю? Из пункта A в пункт B выехал велосипедист. Одновременно из пункта B в пункт A навстречу велосипедисту вышел пешеход. После их встречи велосипедист повернул обратно, а пешеход продолжил свой путь. Известно, что велосипедист вернулся в пункт A на 30 минут раньше пешехода, при этом его скорость была в 5 раз больше скорости пешехода. Сколько времени затратил пешеход на путь из A в B? Точка P лежит внутри треугольника ABC, причём ∠ABP = ∠ACP. На прямых AB и AC взяты такие точки C1 и B1, что BC1 : CB1 = CP : BP. Докажите, что одна из диагоналей параллелограмма, две стороны которого лежат на прямых BP и CP, а две другие стороны (или их продолжения) проходят через B1 и C1, параллельна BC. На клетчатой бумаге нарисован замкнутый путь (по линиям сетки). Доказать, что он имеет чётную длину (сторона клетки имеет длину 1). Найдите у чисел а) (6 + В народной дружине 100 человек. Каждый вечер на дежурство выходят трое.
Каким линейным рекуррентным соотношениям
удовлетворяют последовательности
Отличник Поликарп купил общую тетрадь объёмом 96 листов и пронумеровал все её страницы по порядку числами от 1 до 192. Двоечник Колька вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. В ответе у Кольки получилось 2002. Не ошибся ли он? Можно ли составить магический квадрат из первых 36 простых чисел?
Докажите, что при всех натуральных n
выполняется сравнение
[(1 + |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
Докажите, что при всех натуральных n
выполняется сравнение
[(1 +
Докажите, что последовательность an = 1 + 17n² (n ≥ 0) содержит бесконечно много квадратов целых чисел.
Определим последовательности {xn} и {yn} при помощи условий:
xn = xn - 1 + 2yn - 1sin2
Найдите выражение для xn и yn через n и
Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче?
Как будет выглядеть формула n-го члена для рекуррентной последовательности k-го порядка, если
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке