ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
год/номер:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный. Пусть h — наибольшая высота нетупоугольного
треугольника. Докажите, что r + R Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением
z(
В треугольнике ABC ∠A = 45°, BH – высота, точка K лежит на стороне AC, причём BC = CK. Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого. Доказать: сумма Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете. Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда
a'(b - c) + b'(c - a) + c'(a - b) = 0.
Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.
Решить уравнение x8 + 4x4 + x² + 1 = 0. В гости пришло 10 гостей и каждый оставил в коридоре пару калош. Все пары калош имеют разные размеры. Гости начали расходиться по одному, одевая любую пару калош, в которые они могли влезть (т.е. каждый гость мог надеть пару калош, не меньшую, чем его собственные). В какой-то момент обнаружилось, что ни один из оставшихся гостей не может найти себе пару калош, чтобы уйти. Какое максимальное число гостей могло остаться? В треугольнике ABC биссектриса AK перпендикулярна медиане CL. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 185]
Существуют ли два таких четырехугольника, что стороны первого меньше соответствующих сторон второго, а соответствующие диагонали больше?
Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает стороны AB и AC в точках M и P соответственно. При каком расположении точек M и P радиус окружности, описанной около треугольника BMP, будет наименьшим?
В треугольнике ABC биссектриса AK перпендикулярна медиане CL.
Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Описанные окружности треугольников AOB и COD пересекаются в точке M на стороне AD. Докажите, что точка O – центр вписанной окружности треугольника BMC.
В треугольнике ABC ∠A = 45°, BH – высота, точка K лежит на стороне AC, причём BC = CK.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 185]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке