Страница: 1 [Всего задач: 5]
Задача
64441
(#1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Найдётся ли такое десятизначное число, записанное десятью различными цифрами, что после вычеркивания из него любых шести цифр получится составное четырёхзначное число?
Задача
64445
(#2)
|
|
Сложность: 3+ Классы: 9,10,11
|
На сторонах треугольника ABC построены три подобных треугольника: YBA и ZAC – во внешнюю сторону, а XBC – внутрь (соответственные вершины перечисляются в одинаковом порядке). Докажите, что AYXZ – параллелограмм.
Задача
64446
(#3)
|
|
Сложность: 4- Классы: 9,10,11
|
Наименьшее общее кратное натуральных чисел a, b будем обозначать [a, b]. Пусть натуральное число n таково, что [n, n + 1] > [n, n + 2] > ... > [n, n + 35].
Докажите, что [n, n + 35] > [n, n + 36].
Задача
64444
(#4)
|
|
Сложность: 4- Классы: 8,9,10,11
|
На шахматной доске стоят восемь не бьющих друг друга ладей. Докажите, что можно каждую из них передвинуть ходом коня так, что они по-прежнему не будут бить друг друга. (Все восемь ладей передвигаются "одновременно", то есть если, например, две ладьи бьют друг друга ходом коня, то их можно поменять местами.)
Задача
64447
(#5)
|
|
Сложность: 4- Классы: 9,10,11
|
Космический аппарат сел на неподвижный астероид, про который известно только, что он представляет собой шар или куб. Аппарат проехал по поверхности астероида в точку, симметричную начальной относительно центра астероида. Всё это время он непрерывно передавал свои пространственные координаты на космическую станцию, и там точно определили трёхмерную траекторию аппарата. Может ли этого оказаться недостаточно, чтобы отличить, по кубу или по шару ездил аппарат?
Страница: 1 [Всего задач: 5]