Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

Лестница имеет 100 ступенек. Коля хочет спуститься по лестнице, при этом он двигается начиная сверху прыжками вниз и вверх по очереди. Прыжки бывают трёх типов – на шесть ступенек (через пять на шестую), на семь и на восемь. Два раза на одну ступеньку Коля не становится. Сможет ли он спуститься?

Вниз   Решение


Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?

ВверхВниз   Решение


Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.

ВверхВниз   Решение


Даны 100 чисел. Когда каждое из них увеличили на 1, сумма их квадратов не изменилась. Каждое число ещё раз увеличили на 1.
Изменится ли сумма квадратов на этот раз, и если да, то на сколько?

ВверхВниз   Решение


Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного?

ВверхВниз   Решение


По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?
  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

ВверхВниз   Решение


Незнайка хвастается, что написал в ряд несколько единиц, поставил между каждыми соседними единицами знак "+" или "×", расставил скобки и получил выражение, значение которого равно 2014; более того, если в этом выражении заменить одновременно все знаки "+" на знаки "×", а знаки "×" на знаки "+", все равно получится 2014. Может ли он быть прав?

ВверхВниз   Решение


На каждой клетке шахматной доски вначале стоит по ладье. Каждым ходом можно снять с доски ладью, которая бьет нечётное число ладей. Какое наибольшее число ладей можно снять? (Ладьи бьют друг друга, если они стоят на одной вертикали или горизонтали и между ними нет других ладей.)

ВверхВниз   Решение


Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника
  a) число вершин;
  б) число рёбер.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 65841  (#1)

Темы:   [ Остовы многогранных фигур ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 9,10,11

Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника
  a) число вершин;
  б) число рёбер.

Прислать комментарий     Решение

Задача 65842  (#2)

Темы:   [ Счетные и несчетные подмножества ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?

Прислать комментарий     Решение

Задача 65843  (#3)

Темы:   [ Показательные неравенства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 9,10,11

Известно, что число a положительно, а неравенство  10 < ax < 100  имеет ровно пять решений в натуральных числах.
Сколько таких решений может иметь неравенство  100 < ax < 1000?

Прислать комментарий     Решение

Задача 65844  (#4)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 9,10,11

Четырёхугольник ABCD – вписанный,  AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
Докажите, что  MN = BM + ND.

Прислать комментарий     Решение

Задача 65845  (#5)

Темы:   [ Наглядная геометрия ]
[ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

У Пети есть n³ белых кубиков 1×1×1. Он хочет сложить из них куб n×n×n, снаружи полностью белый. Какое наименьшее число граней кубиков должен закрасить Вася, чтобы помешать Пете? Решите задачу при   a)  n = 3;   б)  n = 1000.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .