ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK. В какое наименьшее количество цветов можно покрасить натуральные числа так, чтобы любые два числа, отличающиеся на 2 или в два раза, были покрашены в разные цвета? Пусть ABC – остроугольный треугольник, в котором AC < BC; M – середина стороны AB. В описанной окружности Ω треугольника ABC, проведён диаметр CC'. Прямая CM пересекает прямые AC' и BC' в точках K и L соответственно. Перпендикуляр к прямой AC', проведённый через точку K, перпендикуляр к прямой BC', проведённый через точку L, и прямая AB образуют треугольник Δ. Докажите, что описанная окружность ω треугольника Δ касается окружности Ω. Биссектрисы BD и CE треугольника ABC пересекаются в точке O. Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали
нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только
сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов. Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой. Докажите, что количество положительных корней многочлена f(x) = anxn + ... + a1x + a0 не превосходит числа перемен знака в последовательности an, ..., a1, a0.
Дан выпуклый четырёхугольник площади S. Внутри него выбирается точка и отображается симметрично относительно середин его сторон. Получаются четыре вершины нового четырёхугольника. Найдите его площадь.
Мальчик едет на самокате от одной автобусной остановки до другой и смотрит в зеркало, не появился ли сзади автобус. Как только мальчик замечает автобус, он может изменить направление движения. При каком наибольшем расстоянии между остановками мальчик гарантированно не упустит автобус, если он знает, что едет со скоростью, втрое меньшей скорости автобуса, и способен увидеть автобус на расстоянии не более 2 км? |
Страница: 1 2 3 4 5 6 >> [Всего задач: 29]
Том написал на заборе из досок слово ММО, а Гек — число 2020. Ширина каждой буквы и цифры 9 см, а ширина доски забора — 5 см. Мог ли Гек испачкать меньше досок, чем Том? (Доски расположены вертикально, а слова и числа пишутся горизонтально. Цифры и буквы пишутся через равные промежутки.)
Существует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство $P(x)+P(x+1)+\dots + P(x+10)=x^2$.
Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.
Мальчик едет на самокате от одной автобусной остановки до другой и смотрит в зеркало, не появился ли сзади автобус. Как только мальчик замечает автобус, он может изменить направление движения. При каком наибольшем расстоянии между остановками мальчик гарантированно не упустит автобус, если он знает, что едет со скоростью, втрое меньшей скорости автобуса, и способен увидеть автобус на расстоянии не более 2 км?
Страница: 1 2 3 4 5 6 >> [Всего задач: 29]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке