ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике $ABC$ $AL_a$, $BL_b$, $CL_c$ – биссектрисы, $K_a$ – точка пересечения касательных к описанной окружности в вершинах $B$ и $C$; $K_b$, $K_c$ определены аналогично. Докажите, что прямые $K_aL_a$, $K_bL_b$ и $K_cL_c$ пересекаются в одной точке. Дано уравнение xn – a1xn–1 – a2xn–2 – ... – an–1x – an = 0, где a1 ≥ 0, a2 ≥ 0, an ≥ 0. Четырехугольник $ABCD$ описан вокруг окружности радиуса $R$. Пусть $h_1$ и $h_2$ – высоты опущенные из точки $A$ на стороны $BC$ и $CD$ соответственно. Аналогично $h_3$ и $h_4$ – высоты опущенные из точки $C$ на стороны $AB$ и $AD$. Докажите, что $$ \frac{h_1+h_2-2R}{h_1h_2}=\frac{h_3+h_4-2R}{h_3h_4}. $$ Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет счастливым, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть N – количество счастливых билетов. Докажите равенства: Вычислите суммы:
б) Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон. Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите ∠AMB + ∠ANB + ∠ADB. Докажите, что из равенства P(x) = Q(x)T(x) + R(x) следует соотношение (P(x), Q(x)) = (Q(x), R(x)). Пусть точка $P$ лежит на описанной окружности треугольника $ABC$. Точка $A_1$ симметрична ортоцентру треугольника $PBC$ относительно серединного перпендикуляра к $BC$. Точки $B_1$ и $C_1$ определяются аналогично. Докажите, что точки $A_1$, $B_1$ и $C_1$ лежат на одной прямой. Четырехугольник $ABCD$, вписанный в окружность $\omega$, таков что $AD=BD=AC$. Точка $P$ движется по $\omega$. Прямые $AP$ и $DP$ пересекают прямые $CD$ и $AB$ в точках $E$ и $F$ соответственно. Прямые $BE$ и $CF$ пересекаются в точке $Q$. Найдите геометрическое место точек $Q$. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
Дан треугольник $ABC$. На сторонах $AB$ и $BC$ взяты точки $M$ и $N$ так, что $MN\parallel AC$. Точки $M'$ и $N'$ симметричны соответственно точкам $M$ и $N$ относительно сторон $BC$ и $AB$ соответственно. Пусть $M'A$ пересекает $BC$ в точке $X$, а $N'C$ пересекает $AB$ в точке $Y$. Докажите, что точки $A$, $C$, $X$, $Y$ лежат на одной окружности.
Найдите наименьшее натуральное $k$ такое, что в любом выпуклом $1001$-угольнике сумма длин любых $k$ диагоналей не меньше суммы длин остальных диагоналей.
Внутри прямого угла с вершиной $O$ расположен треугольник $OAB$ с прямым углом $A$. Высота треугольника $OAB$, опущенная на гипотенузу, продолжена за точку $A$ до пересечения со стороной угла $O$ в точке $M$. Расстояния от точек $M$ и $B$ до второй стороны угла $O$ равны $2$ и $1$ соответственно. Найдите $OA$.
Пусть точка $P$ лежит на описанной окружности треугольника $ABC$. Точка $A_1$ симметрична ортоцентру треугольника $PBC$ относительно серединного перпендикуляра к $BC$. Точки $B_1$ и $C_1$ определяются аналогично. Докажите, что точки $A_1$, $B_1$ и $C_1$ лежат на одной прямой.
Четырехугольник $ABCD$, вписанный в окружность $\omega$, таков что $AD=BD=AC$. Точка $P$ движется по $\omega$. Прямые $AP$ и $DP$ пересекают прямые $CD$ и $AB$ в точках $E$ и $F$ соответственно. Прямые $BE$ и $CF$ пересекаются в точке $Q$. Найдите геометрическое место точек $Q$.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке