ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если а) N = 201; б) N = 400?

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



Задача 67165

Темы:   [ Разрезания (прочее) ]
[ Площадь (прочее) ]
[ Правильные многоугольники ]
Сложность: 5
Классы: 10,11

У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если а) N = 201; б) N = 400?
Прислать комментарий     Решение


Задача 67181

Темы:   [ Неравенство треугольника (прочее) ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5
Классы: 7,8,9

На сторонах равностороннего треугольника $ABC$ построены во внешнюю сторону треугольники $AB'C$, $CA'B$, $BC'A$ так, что получился шестиугольник $AB'CA'BC'$, в котором каждый из углов $A'BC'$, $C'AB'$, $B'CA'$ больше $120^\circ$, а для сторон выполняются равенства $AB'=AC'$, $BC'=BA'$, $CA'=CB'$. Докажите, что из отрезков $AB'$, $BC'$, $CA'$ можно составить треугольник.
Прислать комментарий     Решение


Задача 67185

Темы:   [ Вневписанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 8,9,10

Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.
Прислать комментарий     Решение


Задача 67187

Темы:   [ Разрезания (прочее) ]
[ Параллелограммы (прочее) ]
[ Векторы помогают решить задачу ]
[ Вспомогательная раскраска (прочее) ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 8,9,10

Автор: Юран А.Ю.

Правильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны.
Прислать комментарий     Решение


Задача 67199

Темы:   [ Равногранный тетраэдр ]
[ Сфера, вписанная в тетраэдр ]
Сложность: 5
Классы: 10,11

Середины всех высот некоторого тетраэдра лежат на его вписанной сфере. Верно ли, что тетраэдр правильный?
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .