Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 51]
|
|
Сложность: 5 Классы: 10,11
|
У N друзей есть круглая пицца. Разрешается провести не более 100 прямолинейных разрезов, не перекладывая части до окончания разрезаний, после чего распределить все получившиеся кусочки между всеми друзьями так, чтобы каждый получил суммарно одну и ту же долю пиццы по площади. Найдутся ли такие разрезания, если
а) N = 201; б) N = 400?
|
|
Сложность: 5 Классы: 7,8,9
|
На сторонах равностороннего треугольника $ABC$ построены во внешнюю сторону треугольники $AB'C$, $CA'B$, $BC'A$ так, что получился шестиугольник $AB'CA'BC'$, в котором каждый из углов $A'BC'$, $C'AB'$, $B'CA'$ больше $120^\circ$, а для сторон выполняются равенства $AB'=AC'$, $BC'=BA'$, $CA'=CB'$. Докажите, что из отрезков $AB'$, $BC'$, $CA'$ можно составить треугольник.
|
|
Сложность: 5 Классы: 8,9,10
|
Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.
|
|
Сложность: 5 Классы: 8,9,10
|
Правильный 100-угольник разрезали на несколько параллелограммов и два треугольника. Докажите, что эти треугольники равны.
|
|
Сложность: 5 Классы: 10,11
|
Середины всех высот некоторого тетраэдра лежат на его вписанной сфере. Верно ли, что тетраэдр правильный?
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 51]