Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]
Задача
67211
(#6 [8-9 кл])
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Пусть $A_{1}$, $B_{1}$, $C_{1}$ – основания высот остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $A_{1}B_{1}C_{1}$, касается сторон $A_{1}B_{1}, A_{1}C_{1}, B_{1}C_{1}$ в точках $C_{2}, B_{2}, A_{2}$. Докажите, что прямые $AA_{2}, BB_{2}, CC_{2}$ пересекаются в одной точке, лежащей на прямой Эйлера треугольника $ABC$.
Задача
67212
(#7 [8-9 кл])
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$.
Задача
67213
(#8 [8-9 кл])
|
|
Сложность: 4 Классы: 8,9,10,11
|
В треугольнике $ABC$ ($a>b>c$) указаны инцентр $I$, а также точки $K$ и $N$ касания вписанной окружности со сторонами $BC$ и $AC$ соответственно. Проведя не более трёх линий одной линейкой, постройте отрезок длины $a-c$.
Задача
67214
(#9 [8-9 кл])
|
|
Сложность: 4- Классы: 8,9,10,11
|
Про треугольник $ABC$ известно, что точка, симметричная ортоцентру относительно центра описанной окружности, лежит на стороне $BC$. Пусть $A_1$ – основание высоты, проведенной из точки $A$. Докажите, что $A_1$ лежит на окружности, проходящей через середины трёх высот треугольника $ABC$.
Задача
67215
(#10 [8-9 кл])
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Высоты $BE$ и $CF$ остроугольного треугольника $ABC$ пересекаются в точке $H$. Перпендикуляр из $H$ к прямой $EF$ пересекает прямую $\ell$, проходящую через точку $A$ и параллельную $BC$, в точке $P$. Биссектрисы углов, образованных прямыми $\ell$ и $HP$, пересекают прямую $BC$ в точках $S$ и $T$. Докажите, что описанные окружности треугольников $ABC$ и $PST$ касаются.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 48]