Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На окружности $\omega$ зафиксирована точка $A$. Хорды $BC$ окружности $\omega$ выбираются так, что проходят через фиксированную точку $P$. Докажите, что окружности 9 точек треугольников $ABC$ касаются фиксированной окружности, не зависящей от выбора $BC$.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.
|
|
Сложность: 4+ Классы: 9,10,11
|
В неравнобедренном треугольнике $ABC$ точка $M$ – середина $BC$, $P$ – ближайшая к $A$ точка пересечения луча $AM$ и вписанной окружности треугольника, $Q$ – дальняя от $A$ точка пересечения луча $AM$ и вневписанной окружности. Касательная к вписанной окружности в точке $P$ пересекает $BC$ в точке $X$, а касательная к вневписанной окружности в точке $Q$ пересекает $BC$ в точке $Y$. Докажите, что $MX=MY$.
|
|
Сложность: 5 Классы: 9,10,11
|
Дан вписанный четырёхугольник $ABCD$. Произвольная окружность, проходящая через точки $C$ и $D$, пересекает прямые $AC$, $BC$ в точках $X$, $Y$ соответственно. Найдите ГМТ пересечения окружностей $CAY$ и $CBX$.
|
|
Сложность: 5 Классы: 9,10,11
|
Эллипс $\Gamma_1$ c фокусами в серединах сторон $AB$ и $AC$ треугольника $ABC$ проходит через вершину $A$, а эллипс $\Gamma_2$ c фокусами в серединах сторон $AC$ и $BC$ проходит через вершину $C$. Докажите, что точки пересечения этих эллипсов и ортоцентр треугольника $ABC$ лежат на одной прямой.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]