Версия для печати
Убрать все задачи
Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то
разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой
коробки так, что все цвета будут представлены. Докажите, что число способов
такого выбора есть ненулевая степень двойки.
![](images/from_basket.gif)
Решение
Дан квадрат со
стороной 1. От него отсекают четыре
уголка — четыре треугольника, у каждого из которых две стороны идут по сторонам квадрата и составляют 1/3 их длины. С полученным 8-угольником делают то же самое: от каждой вершины отрезают треугольник, две стороны которого составляют по 1/3 соответствующих сторон 8-угольника, и так далее. Получается последовательность многоугольников (каждый содержится в предыдущем). Найдите площадь фигуры, являющейся пересечением всех этих многоугольников (то есть образованной точками, принадлежащими всем многоугольникам).
![](images/from_basket.gif)
Решение