Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Произведение квадратных трёхчленов  x² + a1x + b1x² + a2x + b2,  ...,  x² + anx + bn  равно многочлену  P(x) = x2n + c1x2n–1 + c2x2n–2 + ... + c2n–1x + c2n,  где коэффициенты  c1, c2, ..., c2n  положительны. Докажите, что для некоторого k  (1 ≤ k ≤ n)  коэффициенты ak и bk положительны.

Вниз   Решение


Автор: Храмцов Д.

Набор чисел a0, a1, ..., an удовлетворяет условиям:  a0 = 0,  ak+1ak + 1  при  k = 0, 1, ..., n – 1.  Докажите неравенство  

ВверхВниз   Решение


Имеются одна красная и k  (k > 1)  синих ячеек, а также колода из 2n карт, занумерованных числами от 1 до 2n. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем n можно такими операциями переложить всю колоду в одну из синих ячеек?

ВверхВниз   Решение


Кузнечик прыгает по прямой. В первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее.
Докажите, что после 1985 прыжков он не может оказаться там, где начинал.

ВверхВниз   Решение


Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?

ВверхВниз   Решение


Пусть A' – точка касания вневписанной окружности треугольника ABC со стороной BC. Прямая a проходит через точку A' и параллельна биссектрисе внутреннего угла A. Аналогично строятся прямые b и c. Докажите, что прямые a, b и c пересекаются в одной точке.

ВверхВниз   Решение


Действительные числа x и y таковы, что для любых различных простых нечётных p и q число  xp + yq   рационально.
Докажите, что x и y – рациональные числа.

ВверхВниз   Решение


Автор: Пастор А.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

ВверхВниз   Решение


Существует ли треугольник с вершинами в узлах клетчатой бумаги, каждая сторона которого длиннее 100 клеточек, а площадь меньше площади одной клеточки?

ВверхВниз   Решение


Высота четырехугольной пирамиды SABCD проходит через точку пересечения диагоналей ее основания ABCD . Из вершин основания опущены перпендикуляры AA1 , BB1 , CC1 , DD1 на прямые SC , SD , SA и SB соответственно. Оказалось, что точки S , A1 , B1 , C1 , D1 различны и лежат на одной сфере. Докажите, что прямые AA1 , BB1 , CC1 , DD1 проходят через одну точку.

ВверхВниз   Решение


Докажите, что найдутся четыре таких целых числа a, b, c, d, по модулю больших 1000000, что  1/a + 1/b + 1/c + 1/d = 1/abcd.

ВверхВниз   Решение


Автор: Козлов П.

Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.

ВверхВниз   Решение


Автор: Храбров А.

Докажите, что для любого натурального числа  n > 10000  найдётся такое натуральное число m, представимое в виде суммы двух квадратов, что
 0 < m – n < 3 .

ВверхВниз   Решение


На оси Ox произвольно расположены различные точки  X1, ..., Xnn ≥ 3.  Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось Ox в данных точках (и не пересекающие ееё в других точках). Пусть  y = f1(x),  ...,  y = fm(x)  – соответствующие параболы. Докажите, что парабола  y = f1(x) + ... + fm(x)  пересекает ось Ox в двух точках.

ВверхВниз   Решение


Пусть P(x) – многочлен нечётной степени. Докажите, что уравнение  P(P(x)) = 0  имеет не меньше различных действительных корней, чем уравнение  P(x) = 0.

ВверхВниз   Решение


Доказать, что при любом целом положительном n сумма     больше ½.

Вверх   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 391]      



Задача 30367

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 6,7,8

Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

Прислать комментарий     Решение

Задача 30917

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?

Прислать комментарий     Решение

Задача 76502

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 8,9

Доказать, что при любом целом положительном n сумма     больше ½.

Прислать комментарий     Решение

Задача 79643

Темы:   [ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?

Прислать комментарий     Решение

Задача 79654

Темы:   [ Геометрия на клетчатой бумаге ]
[ Четность и нечетность ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3
Классы: 6,7,8

В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел.

Прислать комментарий     Решение

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .