ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри равностороннего треугольника ABC находится точка O. Прямая OG, соединяющая O с центром тяжести (точкой пересечения медиан) G треугольника, пересекает стороны треугольника (или их продолжения) в точках A', B', C'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ = 3.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78115  (#1)

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 4+
Классы: 9

В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наименьший угол треугольника имел наибольшую величину?
Прислать комментарий     Решение


Задача 78116  (#2)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 4
Классы: 9

Доказать, что число всех цифр в последовательности 1, 2, 3,..., 108 равно числу всех нулей в последовательности 1, 2, 3,..., 109.
Прислать комментарий     Решение


Задача 78117  (#3)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4+
Классы: 9

Внутри равностороннего треугольника ABC находится точка O. Прямая OG, соединяющая O с центром тяжести (точкой пересечения медиан) G треугольника, пересекает стороны треугольника (или их продолжения) в точках A', B', C'. Доказать, что

$\displaystyle {\frac{OA'}{GA'}}$ + $\displaystyle {\frac{OB'}{GB'}}$ + $\displaystyle {\frac{OC'}{GC'}}$ = 3.

Прислать комментарий     Решение

Задача 78118  (#4)

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 4-
Классы: 9

Найти все действительные решения системы уравнений  

Прислать комментарий     Решение

Задача 78119  (#5)

Темы:   [ Наименьший или наибольший угол ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9

В неравносторонний треугольник вписана окружность, точки касания которой со сторонами приняты за вершины второго треугольника. В этот второй треугольник снова вписана окружность, точки касания которой являются вершинами третьего треугольника; в него вписана третья окружность и т.д. Докажите, что в образовавшейся последовательности треугольников нет двух подобных.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .