ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат? Прямые OA и OB перпендикулярны. Найти геометрическое место концов M таких ломаных OM длины 1, которые каждая прямая, параллельная OA или OB, пересекает не более чем в одной точке. Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят. Дана последовательность an = 1 + 2n + ... + 5n. Существуют ли пять идущих подряд её членов, кратных 2005? Известно, что ax³ + bx² + cx + d, где a, b, c, d – данные целые числа, при любом целом x делится на 5. Доказать, что все числа a, b, c, d делятся на 5. Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.
Бесконечная плоская ломаная
A0A1...An..., все углы которой прямые,
начинается в точке A0 с координатами x = 0, y = 1 и обходит начало координат
O по часовой стрелке. Первое звено ломаной имеет длину 2 и параллельно
биссектрисе 4-го координатного угла. Каждое из следующих звеньев пересекает
одну из координатных осей и имеет наименьшую возможную при этом целочисленную
длину. Расстояние OAn = ln. Сумма длин первых n звеньев ломаной равна
sn. Доказать, что найдётся n, для которого
Найти все пары целых чисел (x, y), удовлетворяющие уравнению 3·2x + 1 = y². Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9. К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел. Внутри равностороннего треугольника ABC находится точка O. Прямая OG, соединяющая O с центром тяжести (точкой пересечения медиан) G треугольника, пересекает стороны треугольника (или их продолжения) в точках A', B', C'. Доказать, что |
Страница: 1 [Всего задач: 5]
В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наименьший угол треугольника имел наибольшую величину?
Доказать, что число всех цифр в последовательности 1, 2, 3,..., 108 равно числу всех нулей в последовательности 1, 2, 3,..., 109.
Внутри равностороннего треугольника ABC находится точка O. Прямая OG, соединяющая O с центром тяжести (точкой пересечения медиан) G треугольника, пересекает стороны треугольника (или их продолжения) в точках A', B', C'. Доказать, что
Найти все действительные решения системы уравнений
В неравносторонний треугольник вписана окружность, точки касания которой со сторонами приняты за вершины второго треугольника. В этот второй треугольник снова вписана окружность, точки касания которой являются вершинами третьего треугольника; в него вписана третья окружность и т.д. Докажите, что в образовавшейся последовательности треугольников нет двух подобных.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке