Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов.
Докажите, что есть три вершины, все рёбра между которыми – одного цвета.

Вниз   Решение


Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма времён, необходимых каждому из гномов на путь от своего дома до этого места (по прямой), была наименьшей?

ВверхВниз   Решение


Существует ли на плоскости конечный набор различных векторов $ \overrightarrow{a_1}$, $ \overrightarrow{a_2}$, ..., $ \overrightarrow{a_n}$ такой, что для любой пары различных векторов из этого набора найдётся такая другая пара из этого набора, что суммы каждой из пар равны между собой?

ВверхВниз   Решение


Автор: Вялый М.Н.

Последовательность {an} определяется правилами:  a0 = 9,    .
Докажите, что в десятичной записи числа a10 содержится не менее 1000 девяток.

ВверхВниз   Решение


В круге проведены два диаметра AB и CD. Доказать, что если M — произвольная точка окружности, а P и Q — её проекции на диаметры AB и CD, то длина отрезка PQ не зависит от выбора точки M.

ВверхВниз   Решение


В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом A первой строчки пишется число, равное количеству чисел первой строчки, которые больше A и при этом стоят правее A. По второй строчке аналогично строится третья строчка и т. д.
  а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).
  б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?

ВверхВниз   Решение


Из спичек сложен клетчатый квадрат 9×9, сторона каждой клетки – одна спичка. Петя и Вася по очереди убирают по спичке, начинает Петя. Выиграет тот, после чьего хода не останется целых квадратиков 1×1. Кто может действовать так, чтобы обеспечить себе победу, как бы ни играл его соперник?

ВверхВниз   Решение


На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Докажите, что эту фигуру можно нарисовать, не отрывая карандаша от бумаги и не проводя дважды одну и ту же линию.

ВверхВниз   Решение


а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно.

б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно.

ВверхВниз   Решение


Автор: Савин А.П.

В таблице
    0 1 2 3 ... 9
    9 0 1 2 ... 8
    8 9 0 1 ... 7
        ...
    1 2 3 4 ... 0
отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один элемент.
Докажите, что среди отмеченных элементов есть хотя бы два равных.

ВверхВниз   Решение


На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?

ВверхВниз   Решение


Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?

ВверхВниз   Решение


Доказать, что если целое  n > 1,  то  11·2²·3³·...·nn < nn(n+1)/2.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 78157

Темы:   [ Алгебраические неравенства (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9,10

Доказать, что если целое  n > 1,  то  11·2²·3³·...·nn < nn(n+1)/2.

Прислать комментарий     Решение

Задача 78131

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9,10

В круге проведены два диаметра AB и CD. Доказать, что если M — произвольная точка окружности, а P и Q — её проекции на диаметры AB и CD, то длина отрезка PQ не зависит от выбора точки M.
Прислать комментарий     Решение


Задача 78132

Темы:   [ Десятичная система счисления ]
[ Раскладки и разбиения ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9,10

Сколько существует четырёхзначных номеров (от 0001 до 9999), у которых сумма двух первых цифр равна сумме двух последних цифр?

Прислать комментарий     Решение

Задача 78149

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что на плоскости нельзя расположить больше четырёх выпуклых многоугольников так, чтобы каждые два из них имели общую сторону.
Прислать комментарий     Решение


Задача 78151

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Куб ]
Сложность: 3
Классы: 8,9

Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .