Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию:  aik.
Доказать, что   a1 + a2 + ... + an = b1 + b2 + ...

Вниз   Решение


Может ли число n! оканчиваться цифрами 19760...0?

ВверхВниз   Решение


Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9.

ВверхВниз   Решение


a1, a2, ..., an  – такие числа, что  a1 + a2 + ... + an = 0.  Доказать, что в этом случае справедливо соотношение   S = a1a2 + a1a3 + ... + an–1an ≤ 0
(в сумму S входят все возможные произведения aiaj,  i ≠ j).

ВверхВниз   Решение


30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.

ВверхВниз   Решение


Существует ли такое натуральное число A, что если приписать его к самому себе справа, то полученное число окажется полным квадратом?

ВверхВниз   Решение


a, b, c – такие три числа, что  abc > 0  и  a + b + c > 0.  Доказать, что  an + bn + cn > 0  при любом натуральном n.

ВверхВниз   Решение


В клетках таблицы размером 10×20 расставлено 200 различных чисел. В каждой строчке отмечены три наибольших числа красным цветом, а в каждом столбце отмечены три наибольших числа синим цветом. Доказать, что не менее девяти чисел отмечены в таблице как красным, так и синим цветом.

ВверхВниз   Решение


В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.

ВверхВниз   Решение


Найти множество центров тяжести всех остроугольных треугольников, вписанных в данную окружность.

ВверхВниз   Решение


На плоскости задано конечное множество точек. Доказать, что в нём найдётся точка, у которой имеется не более трёх ближайших к ней точек из этого же множества.

ВверхВниз   Решение


Даны окружность O, прямая a, пересекающая её, и точка M. Через точку M провести секущую b так, чтобы её часть, заключённая внутри окружности O, делилась пополам в точке её пересечения с прямой a.

ВверхВниз   Решение


a, b, c – любые положительные числа. Доказать, что   + + 3/2.

ВверхВниз   Решение


Какое наибольшее количество чисел можно выбрать из набора 1, 2,..., 1963, чтобы сумма никаких двух чисел не делилась на их разность?

ВверхВниз   Решение


a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

ВверхВниз   Решение


На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°.

ВверхВниз   Решение


Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
(p – натуральное число). Доказать, что n! делится на p.

ВверхВниз   Решение


Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что  ∠ABM = ∠CBN.  Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что  AC' = A'C.

ВверхВниз   Решение


Докажите следующий признак делимости на 37. Для того, чтобы узнать, делится ли число на 37, надо разбить его справа налево на группы по три цифры. Если сумма полученных трёхзначных чисел делится на 37, то и данное число делится на 37. (Слово "трёхзначные" употреблено условно: некоторые из групп могут начинаться с нулей и быть на самом деле двузначными или меньше; не трёхзначной будет и самая левая группа, если количество цифр нашего числа не кратно 3.)

ВверхВниз   Решение


Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый, но другой вес. За какое наименьшее число взвешиваний можно определить, в каком мешке лежат фальшивые монеты?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78575  (#1)

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
[ Оценка + пример ]
Сложность: 4+
Классы: 10,11

Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый, но другой вес. За какое наименьшее число взвешиваний можно определить, в каком мешке лежат фальшивые монеты?

Прислать комментарий     Решение

Задача 78576  (#2)

Темы:   [ Процессы и операции ]
[ Доказательство от противного ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 10,11

На лист клетчатой бумаги размером n×n клеток кладутся чёрные и белые кубики, причём каждый кубик занимает ровно одну клетку. Первый слой кубиков положили произвольно, а затем вспомнили, что каждый чёрный кубик должен граничить с чётным числом белых, а каждый белый — с нечётным числом чёрных. Кубики во второй слой положили так, чтобы для всех кубиков первого слоя выполнялось это условие. Если для всех кубиков второго слоя это условие уже выполняется, то больше кубиков не кладут, если же нет, то кладут третий слой так, чтобы чтобы для всех кубиков второго слоя выполнялось это условие, и так далее. Существует ли такое расположение кубиков первого слоя, что этот процесс никогда не кончится?

Прислать комментарий     Решение

Задача 78577  (#3)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Целочисленные решетки (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 10,11

В прямоугольном бильярде размером p×2q, где p и q – нечётные числа, сделаны лузы в каждом углу и в середине каждой стороны длины 2q. Из угла выпущен шарик под углом 45° к стороне. Доказать, что шарик обязательно попадёт в одну из средних луз.

Прислать комментарий     Решение

Задача 78578  (#4)

Темы:   [ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

Все целые числа от 1 до 2n выписаны в строчку. Затем к каждому числу прибавили номер того места, на котором оно стоит.
Доказать, что среди полученных сумм найдутся хотя бы две, дающие при делении на 2n одинаковый остаток.

Прислать комментарий     Решение

Задача 78579  (#5)

Темы:   [ Комбинаторика (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 10,11

В ящике лежат два ящика поменьше, в каждом из них ещё по два ящика и т.д. n раз. В каждом из 2n маленьких ящиков лежит по монете, причём одни вверх гербом, а остальные – вверх решкой. За один ход разрешается перевернуть один любой ящик вместе со всем, что в нём лежит. Доказать, что не больше, чем за n ходов можно расположить ящики так, что число монет, лежащих вверх гербом, будет равно числу монет, лежащих вверх решкой.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .