ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию: ai ≥ k. Может ли число n! оканчиваться цифрами 19760...0? Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что найдётся такой член прогрессии, в записи которого участвует цифра 9. a1, a2, ..., an – такие числа, что a1 + a2 + ... + an = 0. Доказать, что в этом случае справедливо соотношение S = a1a2 + a1a3 + ... + an–1an ≤ 0 30 команд участвуют в розыгрыше первенства по футболу. Существует ли такое натуральное число A, что если приписать его к самому себе справа, то полученное число окажется полным квадратом? a, b, c – такие три числа, что abc > 0 и a + b + c > 0. Доказать, что an + bn + cn > 0 при любом натуральном n. В клетках таблицы размером 10×20 расставлено 200 различных чисел. В каждой строчке отмечены три наибольших числа красным цветом, а в каждом столбце отмечены три наибольших числа синим цветом. Доказать, что не менее девяти чисел отмечены в таблице как красным, так и синим цветом. В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке. Найти множество центров тяжести всех остроугольных треугольников, вписанных в данную окружность. На плоскости задано конечное множество точек. Доказать, что в нём найдётся точка, у которой имеется не более трёх ближайших к ней точек из этого же множества. Даны окружность O, прямая a, пересекающая её, и точка M. Через точку M провести секущую b так, чтобы её часть, заключённая внутри окружности O, делилась пополам в точке её пересечения с прямой a. a, b, c – любые положительные числа. Доказать, что
Какое наибольшее количество чисел можно выбрать из набора 1, 2,..., 1963, чтобы сумма никаких двух чисел не делилась на их разность? a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0. На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°. Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p Из вершины B произвольного треугольника ABC проведены вне треугольника прямые BM и BN, так что ∠ABM = ∠CBN. Точки A' и C' симметричны точкам A и C относительно прямых BM и BN (соответственно). Доказать, что AC' = A'C. Докажите следующий признак делимости на 37. Для того, чтобы узнать, делится ли число на 37, надо разбить его справа налево на группы по три цифры. Если сумма полученных трёхзначных чисел делится на 37, то и данное число делится на 37. (Слово "трёхзначные" употреблено условно: некоторые из групп могут начинаться с нулей и быть на самом деле двузначными или меньше; не трёхзначной будет и самая левая группа, если количество цифр нашего числа не кратно 3.) Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый, но другой вес. За какое наименьшее число взвешиваний можно определить, в каком мешке лежат фальшивые монеты? |
Страница: 1 [Всего задач: 5]
Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый, но другой вес. За какое наименьшее число взвешиваний можно определить, в каком мешке лежат фальшивые монеты?
На лист клетчатой бумаги размером n×n клеток кладутся чёрные и белые кубики, причём каждый кубик занимает ровно одну клетку. Первый слой кубиков положили произвольно, а затем вспомнили, что каждый чёрный кубик должен граничить с чётным числом белых, а каждый белый — с нечётным числом чёрных. Кубики во второй слой положили так, чтобы для всех кубиков первого слоя выполнялось это условие. Если для всех кубиков второго слоя это условие уже выполняется, то больше кубиков не кладут, если же нет, то кладут третий слой так, чтобы чтобы для всех кубиков второго слоя выполнялось это условие, и так далее. Существует ли такое расположение кубиков первого слоя, что этот процесс никогда не кончится?
В прямоугольном бильярде размером p×2q, где p и q – нечётные числа, сделаны лузы в каждом углу и в середине каждой стороны длины 2q. Из угла выпущен шарик под углом 45° к стороне. Доказать, что шарик обязательно попадёт в одну из средних луз.
Все целые числа от 1 до 2n выписаны в строчку. Затем к каждому числу
прибавили номер того места, на котором оно стоит.
В ящике лежат два ящика поменьше, в каждом из них ещё по два ящика и т.д. n раз. В каждом из 2n маленьких ящиков лежит по монете, причём одни вверх гербом, а остальные – вверх решкой. За один ход разрешается перевернуть один любой ящик вместе со всем, что в нём лежит. Доказать, что не больше, чем за n ходов можно расположить ящики так, что число монет, лежащих вверх гербом, будет равно числу монет, лежащих вверх решкой.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке