ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки? Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов. Доказать, что при любом целом положительном n сумма
В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности: Из точки M описанной окружности треугольника ABC опущены
перпендикуляры MP и MQ на прямые AB и AC. При каком
положении точки M длина отрезка PQ максимальна?
Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение x(x – a)(x – b)(x – c) + 1 разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами. Решить в целых числах уравнение x + y = x² – xy + y². Дан треугольник ABC. Найдите на прямой AB точку M, для которой
сумма радиусов описанных окружностей треугольников ACM и BCM
была бы наименьшей.
Имеется 120-значное число. Его первые 12 цифр переставляются всеми возможными способами. Из полученных таким образом 120-значных чисел наугад выбирают 120 чисел. Доказать, что их сумма делится на 120. Некоторое количество точек расположено на плоскости так, что каждые 3 из них можно заключить в круг радиуса r = 1. Доказать, что тогда и все точки можно заключить в круг радиуса 1. Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров? |
Страница: 1 [Всего задач: 5]
Найти все действительные решения уравнения с четырьмя неизвестными: x² + y² + z² + t² = x(y + z + t).
Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
Натуральные числа a, b, c таковы, что числа p = bc + a, q = ab + c, r = ca + b простые. Доказать, что два из чисел p, q, r равны между собой.
На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?
Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров?
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке