ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Не используя калькуляторов, таблиц и т.п., докажите неравенство sin 1 < log3$ \sqrt{7}$.

   Решение

Задачи

Страница: << 178 179 180 181 182 183 184 >> [Всего задач: 1957]      



Задача 79451

Темы:   [ Многоугольники (экстремальные свойства) ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 9

Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки.
Прислать комментарий     Решение


Задача 79461

Темы:   [ Тригонометрические неравенства ]
[ Логарифмические неравенства ]
Сложность: 3+
Классы: 10,11

Не используя калькуляторов, таблиц и т.п., докажите неравенство sin 1 < log3$ \sqrt{7}$.
Прислать комментарий     Решение


Задача 79469

Темы:   [ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 7,8,9

Длины a, b, c, d четырёх отрезков удовлетворяют неравенствам 0 < abc < dd < a + b + c. Можно ли из этих отрезков сложить трапецию?
Прислать комментарий     Решение


Задача 79490

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 9

На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник квадратом.
Прислать комментарий     Решение


Задача 79502

Темы:   [ Показательные уравнения ]
[ Монотонность и ограниченность ]
Сложность: 3+
Классы: 10,11

Решите уравнение xx4 = 4 (x > 0).
Прислать комментарий     Решение


Страница: << 178 179 180 181 182 183 184 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .