Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Напишите в строку пять чисел, чтобы сумма каждых двух соседних чисел была отрицательна, а сумма всех чисел – положительна.

Вниз   Решение


На шахматной доске 5×5 клеток расставили 25 шашек – по одной на каждой клетке. Потом все шашки сняли с доски, но запомнили, на какой клетке стояла каждая. Можно ли ещё раз расставить шашки на доске таким образом, чтобы каждая шашка стояла на клетке, соседней с той, на которой она стояла в прошлый раз (соседняя по горизонтали или вертикали, но не наискосок)?

ВверхВниз   Решение


Найдите наибольшее натуральное число, все цифры в десятичной записи которого различны и которое уменьшается в 5 раз, если зачеркнуть первую цифру.

ВверхВниз   Решение


Замените в выражении  ABC = DEF  буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз.
(ABC – двузначное число из цифр A и B, возведённое в степень C. Достаточно привести один способ замены.)

ВверхВниз   Решение


Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается извне третьей окружности радиуса R в точках A и B соответственно.
Найдите радиус r, если  AB = 12,  R = 8.

ВверхВниз   Решение


Дана окружность с центром O. На продолжении хорды AB за точку B отложен отрезок BC, равный радиусу. Через точки C и O проведена секущая CD (D – точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что  ∠AOD = 3∠ACD.

ВверхВниз   Решение


Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды.

ВверхВниз   Решение


Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

ВверхВниз   Решение


Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах равные отрезки.
Докажите, что треугольник равнобедренный.

ВверхВниз   Решение


Сколькими способами из полной колоды (52 карты) можно выбрать
  а) 4 карты разных мастей и достоинств?
  б) 6 карт так, чтобы среди них были представители всех четырех мастей?

ВверхВниз   Решение


На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?

ВверхВниз   Решение


В параллелограмме ABCD острый угол равен α . Окружность радиуса r проходит через вершины A , B , C и пересекает прямые AD и CD в точках M и N . Найдите площадь треугольника BMN .

ВверхВниз   Решение


Внутри угла расположены три окружности S1, S2, S3, каждая из которых касается двух сторон угла, причем окружность S2 касается внешним образом окружностей S1 и S3. Известно, что радиус окружности S1 равен 1, а радиус окружности S3 равен 9. Чему равен радиус окружности радиус окружности S2?

ВверхВниз   Решение


Шесть на два. Восстановите числовой пример на деление


Вверх   Решение

Задачи

Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 644]      



Задача 88333

Тема:   [ Ребусы ]
Сложность: 4-
Классы: 7,8,9

Шесть на два. Восстановите числовой пример на деление


Прислать комментарий     Решение

Задача 107751

Темы:   [ Геометрия на клетчатой бумаге ]
[ Свойства симметрии и центра симметрии ]
[ Обратный ход ]
Сложность: 4-
Классы: 7,8,9

Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.
Прислать комментарий     Решение


Задача 32802

Темы:   [ Удвоение медианы ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 7,8,9

В равнобедренном треугольнике ABC  (AB = BC)  биссектриса BD в два раза короче биссектрисы AE. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 32828

Темы:   [ Принцип Дирихле (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 7,8,9,10

Теннисист для тренировки играет каждый день хотя бы одну партию; при этом, чтобы не перетрудиться, он играет не более 12 партий в неделю.
Докажите, что можно найти несколько таких подряд идущих дней, в течение которых теннисист сыграл ровно двадцать партий.

Прислать комментарий     Решение

Задача 32839

Тема:   [ Задачи на движение ]
Сложность: 4-
Классы: 7,8,9

Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?

Прислать комментарий     Решение

Страница: << 120 121 122 123 124 125 126 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .