Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Певзнер И.

Вершины 50-угольника делят окружность на 50 дуг, длины которых – 1, 2, 3, ..., 50 в некотором порядке. Известно, что каждая пара "противоположных" дуг (соответствующих противоположным сторонам 50-угольника) отличается по длине на 25. Докажите, что у 50-угольника найдутся две параллельные стороны.

Вниз   Решение


Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.

ВверхВниз   Решение


Точки D и E делят стороны AC и AB правильного треугольника ABC в отношениях  AD : DC = BE : EA = 1 : 2. Прямые BD и CE пересекаются в точке O. Докажите, что  $ \angle$AOC = 90o.

ВверхВниз   Решение


Докажите, что произведение всех целых чисел от  21917 + 1  до  21991 – 1  включительно не есть квадрат целого числа.

ВверхВниз   Решение


Пусть m, n и k – натуральные числа, причём  m > n.  Какое из двух чисел больше:

    или  

(В каждом выражении k знаков квадратного корня, m и n чередуются.)

ВверхВниз   Решение


Автор: Анджанс А.

В вершинах квадрата сидят четыре кузнечика. Они прыгают в произвольном порядке, но не одновременно. Каждый кузнечик прыгает в такую точку, которая симметрична точке, в которой он находился до прыжка, относительно центра тяжести трёх других кузнечиков. Может ли в какой-то момент один кузнечик приземлиться на другого? (Кузнечики точечные.)

ВверхВниз   Решение


а) Докажите, что если  a + ha = b + hb = c + hc, то треугольник ABC правильный.
б) В треугольник ABC вписаны три квадрата: у одного две вершины лежат на стороне AC, у другого — на BC, у третьего — на AB. Докажите, что если все три квадрата равны, то треугольник ABC правильный.

ВверхВниз   Решение


В квадрат вписано 1993 различных правильных треугольника (треугольник вписан, если три его вершины лежат на сторонах квадрата).
Докажите, что внутри квадрата можно указать точку, лежащую на границе не менее чем 499 из этих треугольников.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98147  (#1)

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматная раскраска ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

В таблице  n×n  разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)

Прислать комментарий     Решение

Задача 98148  (#2)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 8,9

В квадрат вписано 1993 различных правильных треугольника (треугольник вписан, если три его вершины лежат на сторонах квадрата).
Докажите, что внутри квадрата можно указать точку, лежащую на границе не менее чем 499 из этих треугольников.

Прислать комментарий     Решение

Задача 98149  (#3)

Темы:   [ Тождественные преобразования ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 8,9,10

Можно ли подобрать два многочлена P(x) и Q(x) с целыми коэффициентами так, что  P – QP и  P + Q  – квадраты некоторых многочленов (причём Q не получается умножением P на число)?

Прислать комментарий     Решение

Задача 98150  (#4)

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Осевая и скользящая симметрии (прочее) ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD  AB = BC = CD = 1,  AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным.

Прислать комментарий     Решение

Задача 98151  (#5)

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
[ Аналитический метод в геометрии ]
[ Трапеции (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Дан угол с вершиной O и внутри него точка A. Рассмотрим такие точки M, N на разных сторонах данного угла, что углы MAO и OAN равны.
Докажите, что все прямые MN проходят через одну точку (или параллельны).

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .