ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 86]
Дан параллелограмм ABCD. Вневписанная окружность
треугольника ABD касается продолжений сторон AD и AB в
точках M и N. Докажите, что точки пересечения отрезка MN с BC
и CD лежат на вписанной окружности треугольника BCD.
На каждой стороне четырехугольника ABCD взято по две
точки, и они соединены так, как показано на рис. Докажите, что если
все пять заштрихованных четырехугольников описанные,
то четырехугольник ABCD тоже описанный.
Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой
ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем
путь в начальной точке. Участки пути, по которым мы приближались к центру
окружности, берём со знаком плюс, а участки пути, по которым мы
удалялись от центра, — со знаком минус. Докажите, что для любого
такого пути сумма длин участков пути, взятых с указанными
знаками, равна нулю.
Через точку P, лежащую на общей хорде AB двух
пересекающихся окружностей, проведены хорда KM первой
окружности и хорда LN второй окружности. Докажите, что
четырехугольник KLMN вписанный.
Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 86]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке