Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Дан трехгранный угол с вершиной O. Можно ли найти такое плоское сечение ABC, чтобы углы OAB, OBA, OBC, OCB, OAC, OCA были острыми?

Вниз   Решение


В кубе ABCDABCD₁, ребро которого равно 4, точки E и F ─ середины рёбер AB и BC₁ соответственно, а точка P расположена на ребре CD так, что PD = 3PC. Найдите

1) расстояние от точки F до прямой AP;

2) расстояние между прямыми EF и AP;

3) расстояние от точки A₁ до плоскости треугольника EFP.

ВверхВниз   Решение


Даны два натуральных числа m и n. Выписываются все различные делители числа m – числа a, b, ..., k – и все различные делители числа n – числа s, t, ..., z. (Само число и 1 тоже включаются в число делителей.) Оказалось, что  a + b + ... + k = s + t + ... + z  и  1/a + 1/b + ... + 1/k = 1/s + 1/t + ... + 1/z.
Доказать, что  m = n.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1; прямые B1C1, BB1 и CC1 пересекают прямую AA1 в точках M, P и Q соответственно. Докажите, что:
а) A1M/MA = (A1P/PA) + (A1Q/QA);
б) если P = Q, то MC1 : MB1 = (BC1/AB) : (CB1/AC).

ВверхВниз   Решение


Две фирмы по очереди нанимают программистов, среди которых есть 11 гениев. Первого программиста каждая фирма выбирает произвольно, а каждый следующий должен быть знаком с кем-то из ранее нанятых данной фирмой. Если фирма не может нанять программиста по этим правилам, она прекращает приём, а другая может продолжать. Список программистов и их знакомств заранее известен, включая информацию о том, кто гении. Могут ли знакомства быть устроены так, что фирма, вступающая в игру второй, сможет нанять 10 гениев, как бы ни действовала первая фирма?

ВверхВниз   Решение


а) Докажите, что момент инерции относительно центра масс системы точек с единичными массами равен $ {\frac{1}{n}}$$ \sum\limits_{i<j}^{}$aij2, где n — число точек, aij — расстояние между точками с номерами i и j.
б) Докажите, что момент инерции относительно центра масс системы точек с массами m1,..., mn, равен $ {\frac{1}{m}}$$ \sum\limits_{i<j}^{}$mimjaij2, где m = m1 +...+ mn, aij — расстояние между точками с номерами i и j.

ВверхВниз   Решение


Вписанная окружность треугольника ABC  (AB > BC)  касается сторон AB и AC в точках P и Q соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC.

Вверх   Решение

Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501]      



Задача 66177

Темы:   [ Описанные четырехугольники ]
[ Перпендикулярные прямые ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3+
Классы: 8,9,10

Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.

Прислать комментарий     Решение

Задача 66260

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9,10

Диагонали параллелограмма ABCD пересекаются в точке O. Касательная, проведённая к описанной окружности треугольника BOC в точке O, пересекает луч CB в точке F. Описанная окружность треугольника FOD повторно пересекает прямую BC в точке G. Докажите, что  AG = AB.

Прислать комментарий     Решение

Задача 66299

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD, в котором  AB = BC  и  AD = CD,  вписан в окружность. Точка M лежит на меньшей дуге CD этой окружности. Прямые BM и CD пересекаются в точке P, а прямые AM и BD – в точке Q. Докажите, что  PQ || AC.

Прислать комментарий     Решение

Задача 66718

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10,11

В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что  $CN = AB$.  Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.

Прислать комментарий     Решение

Задача 105199

Темы:   [ Вспомогательные равные треугольники ]
[ Признаки равенства прямоугольных треугольников ]
[ Отношения линейных элементов подобных треугольников ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 7,8,9

Треугольники ABC и A1B1C1 – равнобедренные прямоугольные (стороны AB и A1B1 – гипотенузы). Известно, что C1 лежит на BC, B1 лежит на AB, а A1 лежит на AC. Докажите, что  AA1 = 2CC1.

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .