|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Из вершины B равнобедренного треугольника ABC на его основание AC опущена высота BD. Каждая из боковых сторон AB и BC треугольника ABC равна 8. В треугольнике BCD проведена медиана DE. В треугольник BDE вписана окружность, касающаяся стороны BE в точке K и стороны DE в точке M. Отрезок KM равен 2. Найдите угол A.
|
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 979]
На рисунке изображены графики трёх квадратных трёчленов.
На параболе y = x² выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Существуют ли числа такие p и q, что уравнения x² + (p – 1)x + q = 0 и x² + (p + 1)x + q = 0 имеют по два различных корня, а уравнение
Найдите все положительные корни уравнения xx + x1–x = x + 1.
Существуют ли такие три числа, что если их поставить в одном порядке в качестве коэффициентов квадратного трёхчлена, то он имеет два положительных корня, а если в другом – два отрицательных?
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 979] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|