Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.

Вниз   Решение



В прямом параллелепипеде ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1 известно, что AB = 29, AD = 36, BD = 25, AA1 = 48. Найдите площадь сечения AB1C1D.

Вверх   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1442]      



Задача 111660

Тема:   [ Отношение, в котором биссектриса делит сторону ]
Сложность: 3
Классы: 8,9

В треугольнике ABC известно, что AB=c , BC=a , AC=b ; O — центр окружности, касающейся стороны AB и продолжений сторон AC и BC , D — точка пересечения луча CO со стороной AB . Найдите отношение
Прислать комментарий     Решение


Задача 111697

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Точки K , L , M и N — середины сторон соответственно AB , BC , CD и AD параллелограмма ABCD площади s . Найдите площадь четырёхугольника, образованного пересечением прямых AL , AM , CK и CN .
Прислать комментарий     Решение


Задача 115276

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Ромбы. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Точки A1, B1, C1 – середины сторон соответственно BC, AC, AB треугольника ABC. Известно, что A1A и B1B – биссектрисы углов треугольника A1B1C1. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 115318

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9

AD – диаметр окружности, описанной около четырёхугольника ABCD. Точка E симметрична точке A относительно середины BC.
Докажите, что  DEBC.

Прислать комментарий     Решение

Задача 115463

Темы:   [ Удвоение медианы ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

В треугольнике АВС медиана ВМ в два раза меньше стороны АВ и образует с ней угол 40°. Найдите угол АВС.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1442]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .