Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 416]
|
|
Сложность: 3+ Классы: 10,11
|
При всех значениях параметра a найдите число действительных корней уравнения x³ – x – a = 0.
|
|
Сложность: 3+ Классы: 10,11
|
Пусть |x1| ≤ 1 и
|x2| ≤ 1. Докажите неравенство
|
|
Сложность: 3+ Классы: 9,10,11
|
У чисел 1000², 1001², 1002², ... отбрасывают по две последние цифры. Сколько первых членов полученной последовательности образуют арифметическую прогрессию?
|
|
Сложность: 3+ Классы: 9,10,11
|
Многочлен p и число a таковы, что для любого числа x верно равенство p(x) = p(a – x).
Докажите, что p(x) можно представить в виде многочлена от (x – a/2)².
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что если p/q – несократимая рациональная дробь, являющаяся корнем полинома f(x) с целыми коэффициентами, то p – kq есть делитель числа f(k) при любом целом k.
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 416]