ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 159 160 161 162 163 164 165 >> [Всего задач: 829]      



Задача 109499

Темы:   [ Точка Торричелли ]
[ Симметрия помогает решить задачу ]
[ Свойства биссектрис, конкуррентность ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 115900

Темы:   [ Правильные многоугольники ]
[ Средняя линия треугольника ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Центральная симметрия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Белухов Н.

Дан правильный 17-угольник A1... A17. Докажите, что треугольники, образованные прямыми A1A4, A2A10, A13A14 и A2A3, A4A6, A14A15, равны.

Прислать комментарий     Решение

Задача 65379

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Средняя линия треугольника ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 5
Классы: 10,11

Автор: Яковлев И.

В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1, CC1 и отмечены точки A2, B2, C2, в которых вневписанные окружности касаются сторон BC, CA, AB соответственно. Прямая B1C1 касается вписанной окружности треугольника. Докажите, что точка A1 лежит на описанной окружности треугольника A2B2C2.

Прислать комментарий     Решение

Задача 116653

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вневписанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 5
Классы: 10,11

Дан неравнобедренный треугольник ABC. Пусть N – середина дуги BAC его описанной окружности, а M – середина стороны BC. Обозначим через I1 и I2 центры вписанных окружностей треугольников ABM и ACM соответственно. Докажите, что точки I1, I2, A, N лежат на одной окружности.

Прислать комментарий     Решение

Задача 65518

Темы:   [ Перпендикулярные прямые ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
[ Угол между касательной и хордой ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 9,10,11

В остроугольном треугольнике MKN проведена биссектриса KL. Точка X на стороне MK такова, что  KX = KN.  Докажите, что прямые KO и XL перпендикулярны (O – центр описанной окружности треугольника MKN).

Прислать комментарий     Решение

Страница: << 159 160 161 162 163 164 165 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .