Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 283]
На основании
BC треугольника
ABC найти точку
M так, чтобы
окружности, вписанные в треугольники
ABM и
AMC взаимно
касались.
На сторонах BC, CA и AB треугольника взяты точки A1,
B1, C1 соответственно, причём радиусы окружностей,
вписанных в треугольники
A1BC1,
AB1C1 и
A1B1C,
равны между собой и равны r. Радиус окружности, вписанной в
треугольник
A1B1C1, равен r1. Найдите радиус окружности,
вписанной в треугольник ABC.
|
|
Сложность: 5 Классы: 10,11
|
В равнобедренном треугольнике $ABC$ ($AB=AC$) проведена высота $AA_0$.
Окружность $\gamma$ с центром в середине $AA_0$ касается прямых $AB$ и $AC$. Из точки $X$ прямой $BC$ проведены две касательные к $\gamma$.
Докажите, что эти касательные высекают на прямых $AB$ и $AC$ равные отрезки.
|
|
Сложность: 5 Классы: 8,9,10
|
Периметр треугольника $ABC$ равен 1. Окружность $\omega$ касается стороны $BC$, продолжения стороны $AB$ в точке $P$ и продолжения стороны $AC$ в точке $Q$. Прямая, проходящая через середины $AB$ и $AC$, пересекает описанную окружность треугольника $APQ$ в точках $X$ и $Y$. Найдите длину отрезка $XY$.
|
|
Сложность: 6- Классы: 9,10,11
|
Окружность с центром
I касается сторон
AB ,
BC ,
AC неравнобедренного треугольника
ABC в точках
C1 ,
A1 ,
B1 соответственно.
Окружности
ωB и
ωC вписаны в четырехугольники
BA1IC1 и
CA1IB1 соответственно. Докажите, что общая внутренняя
касательная к
ωB и
ωC , отличная от
IA1 , проходит через точку
A .
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 283]