Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 512]
Две окружности с центрами O и Q, пересекающиеся друг с другом в
точках A и B, пересекают биссектрису угла OAQ в точках C и D соответственно. Отрезки AD и OQ пересекаются в точке E, причём площади треугольников OAE и QAE равны 18 и 42 соответственно. Найдите площадь четырёхугольника OAQD и отношение BC : BD.
Две окружности с центрами O и Q, пересекающиеся друг с другом в
точках A и B, пересекают биссектрису угла OAQ в точках C и D соответственно. Отрезки OQ и AD пересекаются в точке E, причём площади треугольников OAE и QAE равны
49 и 21 соответственно. Найдите площадь четырёхугольника OAQD и
отношение BC : BD.
Из точки C проведены две касательные к окружности, A и B – точки касания. На окружности взята точка M, отличная от A и B. Из точки M опущены перпендикуляры MN, ME, MD на стороны AB, BC, CA треугольника ABC соответственно. Найдите площадь треугольника MNE, если известны стороны MN = 4, MD = 2 и ∠ACB = 120°.
Окружность касается сторон AB и AC треугольника ABC, D и E – точки касания. На окружности взята точка F, отличная от D и E. Из точки F опущены перпендикуляры FG, FH, FK на стороны AD, AE, DE соответственно. Найдите площадь
треугольника GKF, если FK = 6, FH = 9 и ∠BAC = 60°.
Биссектриса угла A треугольника ABC пересекает сторону BC в точке D. Окружность радиуса 35, центр которой лежит на прямой BC, проходит через точки A и D. Известно, что
AB² – AC² = 216, а площадь треугольника ABC равна 90. Найдите радиус описанной окружности треугольника ABC.
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 512]