Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 330]
На сторонах AB, BC, CD и DA квадрата ABCD
построены внутренним образом правильные треугольники ABK, BCL, CDM и DAN. Докажите, что середины сторон этих треугольников (не
являющихся сторонами квадрата) и середины отрезков KL, LM, MN
и NK образуют правильный двенадцатиугольник.
|
|
Сложность: 4- Классы: 9,10
|
Пусть L – точка пересечения симедиан остроугольного треугольника ABC, а BH – его высота. Известно, что ∠ALH = 180° – 2∠A.
Докажите, что ∠CLH = 180° – 2∠C.
|
|
Сложность: 4- Классы: 9,10
|
В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.
Четырёхугольник ABCD вписан в окружность. Известно, что
AC BD. Найдите
длину BC, если расстояние от центра окружности до стороны AD равно 2.
Внутри квадрата
ABCD расположен квадрат
KMXY.
Докажите, что середины отрезков
AK,
BM,
CX и
DY также являются
вершинами квадрата.
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 330]