ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 499]      



Задача 58451

 [Теорема Паскаля]
Темы:   [ Теорема Паскаля ]
[ Применение проективных преобразований, сохраняющих окружность ]
[ Теоремы Чевы и Менелая ]
[ Две пары подобных треугольников ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5-
Классы: 9,10,11

В окружность S вписан шестиугольник ABCDEF. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой.

Прислать комментарий     Решение

Задача 66146

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Точка Лемуана ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 5
Классы: 9,10,11

В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1 и CC1. Пусть ω – его описанная окружность, точка M – середина стороны BC, P – вторая точка пересечения описанной окружности треугольника AB1C1 и ω, T – точка пересечения касательных к ω, проведённых в точках B и C, S – точка пересечения AT и ω. Докажите, что P, A1, S и середина отрезка MT лежат на одной прямой.

Прислать комментарий     Решение

Задача 116653

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вневписанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 5
Классы: 10,11

Дан неравнобедренный треугольник ABC. Пусть N – середина дуги BAC его описанной окружности, а M – середина стороны BC. Обозначим через I1 и I2 центры вписанных окружностей треугольников ABM и ACM соответственно. Докажите, что точки I1, I2, A, N лежат на одной окружности.

Прислать комментарий     Решение

Задача 108233

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Процессы и операции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 5+
Классы: 8,9

Автор: Савин А.П.

Дан правильный треугольник ABC . Через вершину B проводится произвольная прямая l , а через точки A и C проводятся прямые, перпендикулярные прямой l , пересекающие её в точках D и E . Затем, если точки D и E различны, строятся правильные треугольники DEP и DET , лежащие по разные стороны от прямой l . Найдите геометрическое место точек P и T .
Прислать комментарий     Решение


Задача 108148

Темы:   [ Гомотетия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства параллелограмма ]
Сложность: 6-
Классы: 9,10,11

Даны две окружности, касающиеся внутренним образом в точке N . Хорды BA и BC внешней окружности касаются внутренней в точках K и M соответственно. Пусть Q и P – середины дуг AB и BC , не содержащих точку N . Окружности, описанные около треугольников BQK и BPM , пересекаются в точке B1 . Докажите, что BPB1Q – параллелограмм.
Прислать комментарий     Решение


Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .