Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 239]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.
|
|
Сложность: 4- Классы: 9,10,11
|
Найдите все углы
α , для которых набор чисел
sinα ,
sin2
α ,
sin3
α совпадает с набором
cosα ,
cos2
α ,
cos3
α .
|
|
Сложность: 4- Классы: 8,9,10,11
|
Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Докажите, что PQ ⊥ AB.
Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.
Страница:
<< 35 36 37 38
39 40 41 >> [Всего задач: 239]