Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 1275]
Отрезок AB является диаметром окружности. Вторая окружность с центром в точке B имеет
радиус, равный 2, и пересекается с первой окружностью в точках C и D.
Хорда CE второй окружности является частью касательной к первой окружности и равна 3.
Найдите радиус первой окружности.
Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.
На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если AB = 12 и BE : EC = 4 : 5. Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.
Трапеция ABCD вписана в окружность. Другая окружность, проходящая через точки A и C, касается прямой CD и пересекает в точке E продолжение основания BC = 7 за точку B. Найдите BE, если AE = 12. Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.
На дугах AB и BC окружности, описанной около треугольника ABC, выбраны соответственно точки K и L так, что прямые KL и AC параллельны.
Докажите, что центры вписанных окружностей треугольников ABK и CBL равноудалены от середины дуги ABC.
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 1275]