Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 342]
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите, что внутри выпуклого многоугольника можно поместить его образ при гомотетии с коэффициентом – ½.
[Теорема о трёх центрах подобия]
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите при помощи комплексных чисел, что композицией двух гомотетий является гомотетия или параллельный перенос: причём в первом случае вектор a параллелен прямой A1A2, а во втором случае центр результирующей гомотетии A лежит на прямой A1A2 и k = k1k2.
Здесь обозначает гомотетию с центром в A с коэффициентом k.
Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром I вписанной окружности треугольника ABC, параллелен AC.
Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а сторону BC – в точке M. Касательная
CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.
На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём r1 > r2 и
r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары
касательных образуют четырёхугольник, в который можно вписать окружность, и
найдите её радиус.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 342]