ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две стороны треугольника имеют длины 6 и 10, причём угол между ними острый. Площадь этого треугольника равна 18. Найдите третью сторону треугольника. Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.) Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
Двое играют на треугольной
доске (см. рис.), закрашивая по очереди на ней треугольные
клеточки. Одна клетка (начальная) уже закрашена перед началом
игры.
Сторона основания правильной четырёхугольной пирамиды равна a . Боковая грань образует с плоскостью основания угол 45o . Найдите высоту пирамиды. На основании AB равнобедренного треугольника ABC даны точки
A1 и B1. Известно, что
AB1 = BA1. На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1. Докажите, что
площадь одного из треугольников
AB1C1, A1BC1, A1B1C не
превосходит:
Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF. В четырёхугольнике ABCD найдите такую точку E , для которой отношение площадей треугольников EAB и ECD было равно 1:2, а треугольников EAD и EBC — 3:4, если известны координаты всех его вершин: A(-2;-4) , B(-2;3) , C(4;6) , D(4;-1) . |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 100]
Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм.
Докажите, что координаты точки пересечения медиан треугольника есть средние арифметические соответствующих координат вершин треугольника.
Треугольник ABC вписан в окружность. Точка A1 диаметрально противоположна точке A, точка A0 – середина стороны BC, точка A2 симметрична точке A1 относительно точки A0. Точки B2 и C2 определяются аналогично. Докажите, что точки A2, B2 и C2 совпадают.
В выпуклом четырёхугольнике ABCD диагональ AC делит пополам отрезок, соединяющий середины сторон BC и AD . В каком отношении она делит диагональ BD ?
Восстановите а) треугольник; б) пятиугольник по серединам его сторон.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке