ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 78]      



Задача 55221

Темы:   [ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 8,9

Дан угол XAY и точка O внутри него. Проведите через точку O прямую, отсекающую от данного угла треугольник наименьшей площади.

Прислать комментарий     Решение


Задача 109887

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Неравенства с площадями ]
[ Перегруппировка площадей ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

Верно ли, что из произвольного треугольника можно вырезать три равные фигуры, площадь каждой из которых больше четверти площади треугольника?
Прислать комментарий     Решение


Задача 115782

Темы:   [ Вневписанные окружности ]
[ Неравенства с площадями ]
[ Вписанные и описанные окружности ]
[ Экстремальные свойства (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4+
Классы: 8,9,10,11

В угол A, равный α, вписана окружность, касающаяся его сторон в точках B и C. Прямая, касающаяся окружности в некоторой точке M, пересекает отрезки AB и AC в точках Р и Q соответственно. При каких α может быть выполнено неравенство SPAQ < SBMC?

Прислать комментарий     Решение

Задача 56788

Темы:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Неравенства с площадями ]
[ Площадь трапеции ]
[ Ортогональная (прямоугольная) проекция ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 5-
Классы: 8,9,10

Прямая l делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную l, в отношении, не превосходящем  1 + .

Прислать комментарий     Решение

Задача 32091

Темы:   [ Пятиугольники ]
[ Неравенства с площадями ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перенос помогает решить задачу ]
[ Монотонность и ограниченность ]
Сложность: 5
Классы: 9,10,11

Дан выпуклый пятиугольник. Каждая диагональ отсекает от него треугольник. Докажите, что сумма площадей треугольников больше площади пятиугольника.

Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .